-
Notifications
You must be signed in to change notification settings - Fork 3
/
compensation.m
81 lines (65 loc) · 1.62 KB
/
compensation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
function compensation
% COMPENSATION
%
% Illustrates the degree of isostatic compensation
% Turcotte & Schubert Eq. 3-117
%
% Last modified by fjsimons-at-alum.mit.edu, 12/01/2021
% Crustal density
rc=2650;
% Mantle density
rm=3300;
% Density contrast
drho=rm-rc;
% Gravitational acceleration
g=9.81;
% Young's modulus
young=1e11;
% Poisson's ratio
poisson=1/4;
% Reference values for effective elastic thickness
Te=[1:10:101]*1000;
% The flexural rigidities that we consider
D=Te.^3*young/12/(1-poisson^2);
% The set of wavelength of the period load that we consider
lambda=linspace(1,1000,1000)*1000;
% The combined space
[LL,DD]=meshgrid(lambda,D);
% The actual degree of compensation
C=drho./(drho+DD./g.*(2*pi./LL).^4);
% Make the figure
figure(gcf)
for index=1:length(D)
p(index)=plot(lambda/1000,C(index,:),'k-');
hold on
end
hold off
set(gca,'xdir','rev')
grid on
longticks
xl(1)=xlabel('wavelength (km)');
yl(1)=ylabel('degree of compensation, w_0/w_{0\infty}');
set(p,'linew',2)
set([gca xl yl],'fonts',12)
% Boxes in the right place (as of 2009...)
post=[936.9676 0.2500
935.2641 0.32
904.5997 0.36
851.7888 0.4
756.3884 0.4
664.3952 0.4
563.8842 0.4
456.5588 0.4
342.4191 0.4
209.5400 0.4
35.7751 0.4
950 0.04];
hold on
fb=fillbox2(...
[post(:,1)-30 post(:,1)+30 post(:,2)+0.015 post(:,2)-0.015],'w');
% Lettering etc
for index=1:length(Te)
t(index)=text(post(index,1),post(index,2),num2str(Te(length(Te)-index+1)/1000));
end
t(index+1)=text(post(index+1,1),post(index+1,2),'Te');
set(t,'horizontala','center')