-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseverity_analysis.py
225 lines (193 loc) · 6.64 KB
/
severity_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 20 22:11:40 2019
@author: naviyamakhija
"""
'''
Investiages the correlation between frequency and severity of violations
through per user analyses
1. Find frequency and severity for each user
- freq = (# hours of violation) / (total # hours recorded)
- sevr = sum of (required temperature - measured temperature) / (total # hours recorded)
for all violations
2. Plot each user as a datapoint and perform regression
3. Conclude
'''
import csv
import sys
import os
from datetime import datetime
import pytz
def calculate_sevr(time, measured_temp, outside_temp):
'''
Calculates (required temperature - measured temperature),
taking into account the time to adjust required temp.
Returns 0 if measured_temp is not a violation
:type time: datetime
:type measured_temp: int
:type outside_temp: int (optional for nighttime)
'''
measured_temp = int(measured_temp)
try:
outside_temp = int(outside_temp)
except Exception:
outside_temp = None
diff = 0
day = [hr for hr in range(6, 22)] # day: 6 AM - 10 PM
night = [22, 23, 0, 1, 2, 3, 4, 5] # night: 10 PM - 6 AM
if time.hour in day:
if not outside_temp:
# Daytime calculation requires outside_temp, but csv files sometimes don't
# satisfy this condition so treating not-enough-info as just non-violationf or now
pass
# raise ValueError('Daytime calculation requires outside_temp information')
elif outside_temp < 55:
required_temp = 68
diff = required_temp - measured_temp
else:
# Not a violation
pass
if time.hour in night:
required_temp = 62
diff = required_temp - measured_temp
# Turning non-violating diff's into 0
if diff < 0:
diff = 0
return diff
class Row:
def __init__(self, user_id, address, zip_code, apartment, sensor_id, bbl, temp, created_at, outdoor_temp, violation):
self.user_id = user_id
self.address = address
self.zip_code = zip_code
self.apartment = apartment
self.sensor_id = sensor_id
self.bbl = bbl
self.temp = temp
self.created_at = created_at
self.outdoor_temp = outdoor_temp
self.violation = violation
def __repr__(self):
return f'<Row Object> user_id: {self.user_id}'
def __str__(self):
return __repr__(self)
def __eq__(self, another_row):
'''
Two Row objects are equal if they have the same user_id
'''
return self.user_id == another_row.user_id
class User:
def __init__(self, row):
self.user_id = row.user_id
self.row_list = [row]
self.num_violation = 0
if row.violation:
self.num_violation += 1
def add_row(self, row):
if self.user_id != row.user_id:
raise ValueError('This row does not belong to this user')
self.row_list.append(row)
if row.violation:
self.num_violation += 1
def __repr__(self):
return f'<User Object> user_id: {self.user_id}'
def __str__(self):
return __repr__(self)
def freq(self):
'''
Calculates the frequency of violation for this user
freq = (# hours of violation) / (total # hours recorded)
'''
return self.num_violation / len(self.row_list)
def sevr(self):
'''
Calculates the severity of violation for this user
sevr = sum of (required temp - measured temp) / (total # hours recorded)
'''
severity = 0
for row in self.row_list:
severity += calculate_sevr(row.created_at, row.temp, row.outdoor_temp)
severity /= len(self.row_list)
return severity
def import_file(path):
'''
Imports dataset in a standardized manner
'''
users = []
with open(path, 'r', newline='') as f:
csv_reader = csv.reader(f)
next(csv_reader)
for row in csv_reader:
#user_id
if (row[0].isdigit()):
row[0] = int(row[0])
#zip_code
if (row[2].isdigit()):
row[2] = int(row[2])
#sensor_id
if (row[4].isdigit()):
row[4] = int(row[4])
#temp
if (row[6].isdigit()):
row[6] = int(row[6])
#outdoor_temp
if (row[8].isdigit()):
row[8] = int(row[8])
#created_at
row[7] = datetime.strptime(row[7], "%Y-%m-%d %H:%M:%S")
#UTC to EST/EDT
row[7] = row[7].replace(tzinfo=pytz.utc)
row[7] = row[7].astimezone(pytz.timezone('US/Eastern'))
if row[9] == 'true':
row[9] = True
elif row[9] == 'false':
row[9] = False
else:
raise ValueError('unexpected value for violation')
row = Row(*row)
user_found = False
for user in users:
if row.user_id == user.user_id:
user.add_row(row)
user_found = True
if not user_found:
users.append(User(row))
return users
def compute_freq_sevr(users):
'''
Returns datapoints in the format (freq, sevr) for each user in users
'''
datapoints = []
for user in users:
freq = user.freq()
sevr = user.sevr()
datapoint = (freq, sevr)
datapoints.append(datapoint)
return datapoints
files = ['./data/2018-2019 data pt 1_Oct 01 2018 to Jan 31 2019.csv', './data/2018-2019 data pt 2_ Feb 01 2019 to May 31 2019.csv']
users = import_file(files[0])
users2 = import_file(files[1])
datapoints = compute_freq_sevr(users)
datapoints2 = compute_freq_sevr(users2)
#matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
from scipy import stats
import seaborn as sns
import statsmodels.api as sm
def plot_freq_sevr(datapoints):
# Showing some stats
X = [datapoint[0] for datapoint in datapoints]
Y = [datapoint[1] for datapoint in datapoints]
results = sm.OLS(Y, X).fit()
print(results.summary())
df = pd.DataFrame({'freq':X, 'sevr':Y})
# Plotting the graph and the best-fit line
sns.regplot('freq', 'sevr', df)
plt.title('Correlation Between Frequency and Severity of Violation Per User')
plt.xlabel('frequency (hour / hour)')
plt.ylabel('severity (degree Fahrenheit / hour)')
plt.show()
if __name__ == "__main__":
plot_freq_sevr(datapoints)
plot_freq_sevr(datapoints2)