-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbhtsne.py
executable file
·159 lines (134 loc) · 6.5 KB
/
bhtsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python
'''
A simple Python wrapper for the bh_tsne binary that makes it easier to use it
for TSV files in a pipeline without any shell script trickery.
Note: The script does some minimal sanity checking of the input, but don't
expect it to cover all cases. After all, it is a just a wrapper.
Example:
> echo -e '1.0\t0.0\n0.0\t1.0' | ./bhtsne.py -p 0.1
-2458.83181442 -6525.87718385
2458.83181442 6525.87718385
The output will not be normalised, maybe the below one-liner is of interest?:
python -c 'import numpy; d = numpy.loadtxt("/dev/stdin");
d -= d.min(axis=0); d /= d.max(axis=0);
numpy.savetxt("/dev/stdout", d, fmt='%.8f', delimiter="\t")'
Author: Pontus Stenetorp <pontus stenetorp se>
Version: 2013-01-22
'''
# Copyright (c) 2013, Pontus Stenetorp <pontus stenetorp se>
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
from argparse import ArgumentParser, FileType
from os.path import abspath, dirname, isfile, join as path_join
from shutil import rmtree
from struct import calcsize, pack, unpack
from subprocess import Popen
from sys import stderr, stdin, stdout
from tempfile import mkdtemp
### Constants
BH_TSNE_BIN_PATH = path_join(dirname(__file__), 'bh_tsne')
assert isfile(BH_TSNE_BIN_PATH), ('Unable to find the bh_tsne binary in the '
'same directory as this script, have you forgotten to compile it?: {}'
).format(BH_TSNE_BIN_PATH)
# Default hyper-parameter values from van der Maaten (2013)
DEFAULT_PERPLEXITY = 30.0
DEFAULT_THETA = 0.5
###
def _argparse():
argparse = ArgumentParser('bh_tsne Python wrapper')
argparse.add_argument('-p', '--perplexity', type=float,
default=DEFAULT_PERPLEXITY)
# 0.0 for theta is equivalent to vanilla t-SNE
argparse.add_argument('-t', '--theta', type=float, default=DEFAULT_THETA)
argparse.add_argument('-v', '--verbose', action='store_true')
argparse.add_argument('-i', '--input', type=FileType('r'), default=stdin)
argparse.add_argument('-o', '--output', type=FileType('w'),
default=stdout)
return argparse
class TmpDir:
def __enter__(self):
self._tmp_dir_path = mkdtemp()
return self._tmp_dir_path
def __exit__(self, type, value, traceback):
rmtree(self._tmp_dir_path)
def _read_unpack(fmt, fh):
return unpack(fmt, fh.read(calcsize(fmt)))
def bh_tsne(samples, perplexity=DEFAULT_PERPLEXITY, theta=DEFAULT_THETA,
verbose=False):
# Assume that the dimensionality of the first sample is representative for
# the whole batch
sample_dim = len(samples[0])
sample_count = len(samples)
# bh_tsne works with fixed input and output paths, give it a temporary
# directory to work in so we don't clutter the filesystem
with TmpDir() as tmp_dir_path:
# Note: The binary format used by bh_tsne is roughly the same as for
# vanilla tsne
with open(path_join(tmp_dir_path, 'data.dat'), 'wb') as data_file:
# Write the bh_tsne header
data_file.write(pack('iidd', sample_count, sample_dim, theta,
perplexity))
# Then write the data
for sample in samples:
data_file.write(pack('{}d'.format(len(sample)), *sample))
# Call bh_tsne and let it do its thing
with open('/dev/null', 'w') as dev_null:
bh_tsne_p = Popen((abspath(BH_TSNE_BIN_PATH), ), cwd=tmp_dir_path,
# bh_tsne is very noisy on stdout, tell it to use stderr
# if it is to print any output
stdout=stderr if verbose else dev_null)
bh_tsne_p.wait()
assert not bh_tsne_p.returncode, ('ERROR: Call to bh_tsne exited '
'with a non-zero return code exit status, please ' +
('enable verbose mode and ' if not verbose else '') +
'refer to the bh_tsne output for further details')
# Read and pass on the results
with open(path_join(tmp_dir_path, 'result.dat'), 'rb') as output_file:
# The first two integers are just the number of samples and the
# dimensionality
result_samples, result_dims = _read_unpack('ii', output_file)
# Collect the results, but they may be out of order
results = [_read_unpack('{}d'.format(result_dims), output_file)
for _ in xrange(result_samples)]
# Now collect the landmark data so that we can return the data in
# the order it arrived
results = [(_read_unpack('i', output_file), e) for e in results]
# Put the results in order and yield it
results.sort()
for _, result in results:
yield result
# The last piece of data is the cost for each sample, we ignore it
#read_unpack('{}d'.format(sample_count), output_file)
def main(args):
argp = _argparse().parse_args(args[1:])
# Read the data, with some sanity checking
data = []
for sample_line_num, sample_line in enumerate((l.rstrip('\n')
for l in argp.input), start=1):
sample_data = sample_line.split('\t')
try:
assert len(sample_data) == dims, ('Input line #{} of '
'dimensionality {} although we have previously observed '
'lines with dimensionality {}, possible data error or is '
'the data sparsely encoded?'
).format(sample_line_num, len(sample_data), dims)
except NameError:
# First line, record the dimensionality
dims = len(sample_data)
data.append([float(e) for e in sample_data])
for result in bh_tsne(data, perplexity=argp.perplexity, theta=argp.theta,
verbose=argp.verbose):
argp.output.write('{}\t{}\n'.format(*result))
if __name__ == '__main__':
from sys import argv
exit(main(argv))