forked from cmhungsteve/LeetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validate-binary-search-tree.py
71 lines (61 loc) · 2.04 KB
/
validate-binary-search-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Time: O(n)
# Space: O(1)
#
# Given a binary tree, determine if it is a valid binary search tree (BST).
#
# Assume a BST is defined as follows:
#
# The left subtree of a node contains only nodes with keys less than the node's key.
# The right subtree of a node contains only nodes with keys greater than the node's key.
# Both the left and right subtrees must also be binary search trees.
#
# Definition for a binary tree node
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
# Morris Traversal Solution
class Solution:
# @param root, a tree node
# @return a list of integers
def isValidBST(self, root):
prev, cur = None, root
while cur:
if cur.left is None:
if prev and prev.val >= cur.val:
return False
prev = cur
cur = cur.right
else:
node = cur.left
while node.right and node.right != cur:
node = node.right
if node.right is None:
node.right = cur
cur = cur.left
else:
if prev and prev.val >= cur.val:
return False
node.right = None
prev = cur
cur = cur.right
return True
# Time: O(n)
# Space: O(h)
class Solution2:
# @param root, a tree node
# @return a boolean
def isValidBST(self, root):
return self.isValidBSTRecu(root, float("-inf"), float("inf"))
def isValidBSTRecu(self, root, low, high):
if root is None:
return True
return low < root.val and root.val < high \
and self.isValidBSTRecu(root.left, low, root.val) \
and self.isValidBSTRecu(root.right, root.val, high)
if __name__ == "__main__":
root = TreeNode(2)
root.left = TreeNode(1)
root.right = TreeNode(3)
print Solution().isValidBST(root)