-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGeneralLens.m
125 lines (114 loc) · 4.39 KB
/
GeneralLens.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
classdef GeneralLens < Surface
% GENERALLENS Implements a lens surface of an arbitrary shape. This
% class requires iterative search of intersections with a ray,
% therefore it works slower than Lens.
%
% Member functions:
%
% l = GeneralLens( r, D, func, glass, varargin ) - object constructor
% INPUT:
% r - 1x3 position vector
% D - diameter
% func - function name string
% glass - 1 x 2 cell array of strings, e.g., { 'air' 'acrylic' }
% varargin - an arbitrary number of parameters required by func.
% OUTPUT:
% l - lens surface object
%
% display() - displays the object's information
%
% draw() - draws the object in the current axes
%
% rotate( rot_axis, rot_angle ) - rotate the surface by rot_angle
% (radians) about the 1x3 rotation axis.
%
% Copyright: Yury Petrov, 2016
%
properties
D = [ 0; 1 ] % lens diameter (inner, outer)
funcs = '' % lens surface function name string
funch = [] % the corresponding function handle
funca = [] % argument list for the function
end
methods
function self = GeneralLens( ar, aD, afunc, aglass, varargin )
if nargin == 0
return;
end
if size( aD, 1 ) < size( aD, 2 )
aD = aD';
end
if size( aD, 1 ) == 1
aD = [ 0; aD ]; % assume inner radius = 0
end
self.r = ar;
self.D = aD;
self.funcs = afunc;
self.funch = str2func( afunc ); % construct function handle from the function name string
self.glass = aglass;
self.funca = varargin;
end
function display( self )
fprintf( 'Position:\t [%.3f %.3f %.3f]\n', self.r );
fprintf( 'Orientation:\t [%.3f %.3f %.3f]\n', self.n );
fprintf( 'Diameter:\t %.3f\n', self.D(2) );
if self.D(1) ~= 0
fprintf( 'Inner diameter:\t %.3f\n', self.D(1) );
end
fprintf( 'Surface function:\t %s\n', self.func );
fprintf( 'Material:\t %s | %s\n', self.glass{ 1 }, self.glass{ 2 } );
end
function h = draw( self, color, plot_type )
% DISPLAY the lens surface
if nargin < 2
color = [ 1 1 1 .5 ];
end
switch plot_type
case '3D'
nrad = 50;
nang = 100;
case 'wireframe'
nrad = 5;
nang = 10;
case 'XY'
nrad = 50;
nang = 100;
case 'XZ'
nrad = 50;
nang = 100;
end
rad = linspace( self.D(1) / 2, self.D(2) / 2, nrad );
ang = linspace( 0, 2 * pi, nang );
[ ang, rad ] = meshgrid( ang, rad );
[ y, z ] = pol2cart( ang, rad );
x = self.funch( y, z, self.funca, 0 );
S = [ x(:) y(:) z(:) ];
% rotate and shift
if self.rotang ~= 0
S = rodrigues_rot( S, self.rotax, self.rotang );
end
x(:) = S( :, 1 ) + self.r( 1 );
y(:) = S( :, 2 ) + self.r( 2 );
z(:) = S( :, 3 ) + self.r( 3 );
c = repmat( reshape( color( 1:3 ), [ 1 1 3 ] ), size( x, 1 ), size( x, 2 ), 1 );
switch plot_type
case '3D'
h = surf( x, y, z, c, ...
'EdgeColor', 'none', 'FaceLighting','phong', 'FaceColor', 'interp', 'FaceAlpha', color(4), ...
'AmbientStrength', 0., 'SpecularStrength', 1 ); % grey color, shiny
case 'wireframe'
[ x, y, z ] = triangulate( x, y, z );
h = patch( x', y', z', 'red', 'FaceAlpha', 0.0 );
%h = surf( x, y, z, c, 'FaceAlpha', 0.0 ); % grey color, shiny
case 'XY'
[ ~, h ] = contour( x, y, z, [ 0.1 0.1 ] );
h.LineWidth = 2.0;
h.LineColor = 'k';
case 'XZ'
[ ~, h ] = contour( x, z, y, [ 0.1 0.1 ] );
h.LineWidth = 2.0;
h.LineColor = 'k';
end
end
end
end