-
Notifications
You must be signed in to change notification settings - Fork 34
/
inference_ccsr.py
213 lines (178 loc) · 8.21 KB
/
inference_ccsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from typing import List, Tuple, Optional
import os
import math
from argparse import ArgumentParser, Namespace
import numpy as np
import torch
import einops
import pytorch_lightning as pl
from PIL import Image
from omegaconf import OmegaConf
from ldm.xformers_state import disable_xformers
from model.q_sampler import SpacedSampler
from model.ccsr_stage1 import ControlLDM
from model.cond_fn import MSEGuidance
from utils.image import auto_resize, pad
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts
@torch.no_grad()
def process(
model: ControlLDM,
control_imgs: List[np.ndarray],
steps: int,
t_max: float,
t_min: float,
strength: float,
color_fix_type: str,
tiled: bool,
tile_size: int,
tile_stride: int
) -> Tuple[List[np.ndarray]]:
"""
Apply CCSR model on a list of low-quality images.
Args:
model (ControlLDM): Model.
control_imgs (List[np.ndarray]): A list of low-quality images (HWC, RGB, range in [0, 255]).
steps (int): Sampling steps.
t_max (float): The starting point of uniform sampling strategy.
t_min (float): The ending point of uniform sampling strategy.
strength (float): Control strength. Set to 1.0 during training.
color_fix_type (str): Type of color correction for samples.
tiled (bool): If specified, a patch-based sampling strategy will be used for sampling.
tile_size (int): Size of patch.
tile_stride (int): Stride of sliding patch.
Returns:
preds (List[np.ndarray]): Restoration results (HWC, RGB, range in [0, 255]).
"""
n_samples = len(control_imgs)
sampler = SpacedSampler(model, var_type="fixed_small")
control = torch.tensor(np.stack(control_imgs) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
model.control_scales = [strength] * 13
height, width = control.size(-2), control.size(-1)
shape = (n_samples, 4, height // 8, width // 8)
x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
if not tiled:
# samples = sampler.sample_ccsr_stage1(
# steps=steps, t_max=t_max, shape=shape, cond_img=control,
# positive_prompt="", negative_prompt="", x_T=x_T,
# cfg_scale=1.0, color_fix_type=color_fix_type
# )
samples = sampler.sample_ccsr(
steps=steps, t_max=t_max, t_min=t_min, shape=shape, cond_img=control,
positive_prompt="", negative_prompt="", x_T=x_T,
cfg_scale=1.0, color_fix_type=color_fix_type
)
else:
samples = sampler.sample_with_mixdiff_ccsr(
tile_size=tile_size, tile_stride=tile_stride,
steps=steps, t_max=t_max, t_min=t_min, shape=shape, cond_img=control,
positive_prompt="", negative_prompt="", x_T=x_T,
cfg_scale=1.0, color_fix_type=color_fix_type
)
x_samples = samples.clamp(0, 1)
x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
control = (einops.rearrange(control, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
preds = [x_samples[i] for i in range(n_samples)]
return preds
def parse_args() -> Namespace:
parser = ArgumentParser()
# TODO: add help info for these options
parser.add_argument("--ckpt", type=str, help="full checkpoint path", default='****/real-world_ccsr.ckpt')
parser.add_argument("--config", type=str, help="model config path", default='configs/model/ccsr_stage2.yaml')
parser.add_argument("--input", type=str, default='preset/test_datasets')
parser.add_argument("--steps", type=int, default=45)
parser.add_argument("--sr_scale", type=float, default=4)
parser.add_argument("--repeat_times", type=int, default=1)
# patch-based sampling (tiling settings)
parser.add_argument("--tiled", action="store_true")
parser.add_argument("--tile_size", type=int, default=512) # image size
parser.add_argument("--tile_stride", type=int, default=256) # image size
parser.add_argument("--color_fix_type", type=str, default="adain", choices=["wavelet", "adain", "none"])
parser.add_argument("--output", type=str, default="experiments/test")
parser.add_argument("--t_max", type=float, default=0.6667)
parser.add_argument("--t_min", type=float, default=0.3333)
parser.add_argument("--show_lq", action="store_true")
parser.add_argument("--skip_if_exist", action="store_true")
parser.add_argument("--seed", type=int, default=233)
parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda", "mps"])
return parser.parse_args()
def check_device(device):
if device == "cuda":
# check if CUDA is available
if not torch.cuda.is_available():
print("CUDA not available because the current PyTorch install was not "
"built with CUDA enabled.")
device = "cpu"
else:
# xformers only support CUDA. Disable xformers when using cpu or mps.
disable_xformers()
if device == "mps":
# check if MPS is available
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
device = "cpu"
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
device = "cpu"
print(f'using device {device}')
return device
def main() -> None:
args = parse_args()
pl.seed_everything(args.seed)
args.device = check_device(args.device)
model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
model.freeze()
model.to(args.device)
assert os.path.isdir(args.input)
args.input_list = [args.input]
for file_path in list_image_files(args.input_list, follow_links=True):
lq = Image.open(file_path).convert("RGB")
if args.sr_scale != 1:
lq = lq.resize(
tuple(math.ceil(x * args.sr_scale) for x in lq.size),
Image.BICUBIC
)
if not args.tiled:
lq_resized = auto_resize(lq, 512)
else:
lq_resized = auto_resize(lq, args.tile_size)
x = lq_resized.resize(
tuple(s // 64 * 64 for s in lq_resized.size), Image.LANCZOS
)
x = np.array(x)
# x = pad(np.array(lq_resized), scale=64)
for i in range(args.repeat_times):
save_path = os.path.join(args.output, os.path.relpath(file_path, args.input))
parent_path, stem, _ = get_file_name_parts(save_path)
save_path_now = os.path.join(parent_path, 'sample' + str(i))
save_path = os.path.join(save_path_now, f"{stem}.png")
if os.path.exists(save_path):
if args.skip_if_exist:
print(f"skip {save_path}")
continue
else:
raise RuntimeError(f"{save_path} already exist")
os.makedirs(save_path_now, exist_ok=True)
preds = process(
model, [x], steps=args.steps,
t_max=args.t_max, t_min=args.t_min,
strength=1,
color_fix_type=args.color_fix_type,
tiled=args.tiled, tile_size=args.tile_size, tile_stride=args.tile_stride
)
pred = preds[0]
if args.show_lq:
pred = np.array(Image.fromarray(pred).resize(lq.size, Image.LANCZOS))
lq = np.array(lq)
images = [lq, pred]
Image.fromarray(np.concatenate(images, axis=1)).save(save_path)
else:
Image.fromarray(pred).resize(lq.size, Image.LANCZOS).save(save_path)
print(f"save to {save_path}")
if __name__ == "__main__":
main()