forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tests.qs
533 lines (484 loc) · 18.8 KB
/
Tests.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains testing harness for all tasks.
// You should not modify anything in this file.
// The tasks themselves can be found in Tasks.qs file.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.Measurements
{
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Extensions.Convert;
open Microsoft.Quantum.Extensions.Math;
open Microsoft.Quantum.Extensions.Testing;
//////////////////////////////////////////////////////////////////
// "Framework" operation for testing single-qubit tasks for distinguishing states of one qubit
// with Bool return
operation DistinguishTwoStates_OneQubit (
statePrep : ((Qubit, Int) => ()),
testImpl : (Qubit => Bool)
) : ()
{
body
{
let nTotal = 100;
mutable nOk = 0;
using (qs = Qubit[1])
{
for (i in 1..nTotal)
{
// get a random bit to define whether qubit will be in a state corresponding to true return (1) or to false one (0)
// state = 0 false return
// state = 1 true return
let state = RandomIntPow2(1);
// do state prep: convert |0⟩ to outcome with false return or to outcome with true return depending on state
statePrep(qs[0], state);
// get the solution's answer and verify that it's a match
let ans = testImpl(qs[0]);
if (ans == (state == 1)) {
set nOk = nOk + 1;
}
// we're not checking the state of the qubit after the operation
Reset(qs[0]);
}
}
AssertIntEqual(nOk, nTotal, $"{nTotal - nOk} test runs out of {nTotal} returned incorrect state.");
}
}
// ------------------------------------------------------
operation StatePrep_IsQubitOne (q : Qubit, state : Int) : () {
body {
if (state == 0) {
// convert |0⟩ to |0⟩
} else {
// convert |0⟩ to |1⟩
X(q);
}
}
}
operation T101_IsQubitOne_Test () : ()
{
body
{
DistinguishTwoStates_OneQubit(StatePrep_IsQubitOne, IsQubitOne);
}
}
// ------------------------------------------------------
operation StatePrep_IsQubitPlus (q : Qubit, state : Int) : () {
body {
if (state == 0) {
// convert |0⟩ to |-⟩
X(q);
H(q);
} else {
// convert |0⟩ to |+⟩
H(q);
}
}
}
operation T102_IsQubitPlus_Test () : ()
{
body
{
DistinguishTwoStates_OneQubit(StatePrep_IsQubitPlus, IsQubitPlus);
}
}
// ------------------------------------------------------
// |A⟩ = cos(alpha) * |0⟩ + sin(alpha) * |1⟩,
// |B⟩ = - sin(alpha) * |0⟩ + cos(alpha) * |1⟩.
operation StatePrep_IsQubitA (alpha : Double, q : Qubit, state : Int) : () {
body {
if (state == 0) {
// convert |0⟩ to |B⟩
X(q);
Ry(2.0 * alpha, q);
} else {
// convert |0⟩ to |A⟩
Ry(2.0 * alpha, q);
}
}
}
operation T103_IsQubitA_Test () : ()
{
body
{
// cross-test
// alpha = 0.0 or PI() => !isQubitOne
// alpha = PI() / 2.0 => isQubitOne
DistinguishTwoStates_OneQubit(StatePrep_IsQubitOne, IsQubitA(PI() / 2.0, _));
// alpha = PI() / 4.0 => isQubitPlus
DistinguishTwoStates_OneQubit(StatePrep_IsQubitPlus, IsQubitA(PI() / 4.0, _));
for (i in 0..10) {
let alpha = PI() * ToDouble(i) / 10.0;
DistinguishTwoStates_OneQubit(StatePrep_IsQubitA(alpha, _, _), IsQubitA(alpha, _));
}
}
}
// ------------------------------------------------------
// "Framework" operation for testing multi-qubit tasks for distinguishing states of an array of qubits
// with Int return
operation DistinguishStates_MultiQubit (
Nqubit : Int,
Nstate : Int,
statePrep : ((Qubit[], Int) => ()),
testImpl : (Qubit[] => Int)
) : ()
{
body
{
let nTotal = 100;
mutable nOk = 0;
using (qs = Qubit[Nqubit])
{
for (i in 1..nTotal)
{
// get a random integer to define the state of the qubits
let state = RandomInt(Nstate);
// do state prep: convert |0...0⟩ to outcome with return equal to state
statePrep(qs, state);
// get the solution's answer and verify that it's a match
let ans = testImpl(qs);
if (ans == state) {
set nOk = nOk + 1;
}
// we're not checking the state of the qubit after the operation
ResetAll(qs);
}
}
AssertIntEqual(nOk, nTotal, $"{nTotal - nOk} test runs out of {nTotal} returned incorrect state.");
}
}
// ------------------------------------------------------
operation StatePrep_ZeroZeroOrOneOne (qs : Qubit[], state : Int) : () {
body {
if (state == 1) {
// |11⟩
X(qs[0]);
X(qs[1]);
}
}
}
operation T104_ZeroZeroOrOneOne_Test () : () {
body {
DistinguishStates_MultiQubit(2, 2, StatePrep_ZeroZeroOrOneOne, ZeroZeroOrOneOne);
}
}
// ------------------------------------------------------
operation StatePrep_BasisStateMeasurement (qs : Qubit[], state : Int) : () {
body {
if (state / 2 == 1) {
// |10⟩ or |11⟩
X(qs[0]);
}
if (state % 2 == 1) {
// |01⟩ or |11⟩
X(qs[1]);
}
}
}
operation T105_BasisStateMeasurement_Test () : () {
body {
DistinguishStates_MultiQubit(2, 4, StatePrep_BasisStateMeasurement, BasisStateMeasurement);
}
}
// ------------------------------------------------------
operation StatePrep_Bitstring (qs : Qubit[], bits : Bool[]) : () {
body {
for (i in 0..Length(qs)-1) {
if (bits[i]) {
X(qs[i]);
}
}
}
}
operation StatePrep_TwoBitstringsMeasurement (qs : Qubit[], bits1 : Bool[], bits2 : Bool[], state : Int) : () {
body {
if (state == 0) {
StatePrep_Bitstring(qs, bits1);
} else {
StatePrep_Bitstring(qs, bits2);
}
}
}
operation T106_TwoBitstringsMeasurement_Test () : () {
body {
for (i in 1..1) {
let b1 = [false; true];
let b2 = [true; false];
DistinguishStates_MultiQubit(2, 2, StatePrep_TwoBitstringsMeasurement(_, b1, b2, _), TwoBitstringsMeasurement(_, b1, b2));
}
for (i in 1..1) {
let b1 = [true; true; false];
let b2 = [false; true; true];
DistinguishStates_MultiQubit(3, 2, StatePrep_TwoBitstringsMeasurement(_, b1, b2, _), TwoBitstringsMeasurement(_, b1, b2));
}
for (i in 1..1) {
let b1 = [false; true; true; false];
let b2 = [false; true; true; true];
DistinguishStates_MultiQubit(4, 2, StatePrep_TwoBitstringsMeasurement(_, b1, b2, _), TwoBitstringsMeasurement(_, b1, b2));
}
for (i in 1..1) {
let b1 = [true; false; false; false];
let b2 = [true; false; true; true];
DistinguishStates_MultiQubit(4, 2, StatePrep_TwoBitstringsMeasurement(_, b1, b2, _), TwoBitstringsMeasurement(_, b1, b2));
}
}
}
// ------------------------------------------------------
operation WState_Arbitrary_Reference (qs : Qubit[]) : ()
{
body
{
let N = Length(qs);
if (N == 1) {
// base case of recursion: |1⟩
X(qs[0]);
} else {
// |W_N> = |0⟩|W_(N-1)> + |1⟩|0...0⟩
// do a rotation on the first qubit to split it into |0⟩ and |1⟩ with proper weights
// |0⟩ -> sqrt((N-1)/N) |0⟩ + 1/sqrt(N) |1⟩
let theta = ArcSin(1.0 / Sqrt(ToDouble(N)));
Ry(2.0 * theta, qs[0]);
// do a zero-controlled W-state generation for qubits 1..N-1
X(qs[0]);
(Controlled WState_Arbitrary_Reference)(qs[0..0], qs[1..N-1]);
X(qs[0]);
}
}
adjoint auto;
controlled auto;
adjoint controlled auto;
}
operation StatePrep_AllZerosOrWState (qs : Qubit[], state : Int) : () {
body {
if (state == 1) {
// prep W state
WState_Arbitrary_Reference(qs);
}
}
}
operation T107_AllZerosOrWState_Test () : () {
body {
for (i in 2..6) {
DistinguishStates_MultiQubit(i, 2, StatePrep_AllZerosOrWState, AllZerosOrWState);
}
}
}
// ------------------------------------------------------
operation GHZ_State_Reference (qs : Qubit[]) : ()
{
body
{
H(qs[0]);
for (i in 1 .. Length(qs)-1) {
CNOT(qs[0], qs[i]);
}
}
adjoint auto;
}
operation StatePrep_GHZOrWState (qs : Qubit[], state : Int) : () {
body {
if (state == 0) {
// prep GHZ state
GHZ_State_Reference(qs);
} else {
// prep W state
WState_Arbitrary_Reference(qs);
}
}
}
operation T108_GHZOrWState_Test () : () {
body {
for (i in 2..6) {
DistinguishStates_MultiQubit(i, 2, StatePrep_GHZOrWState, GHZOrWState);
}
}
}
// ------------------------------------------------------
// 0 - |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2)
// 1 - |Φ⁻⟩ = (|00⟩ - |11⟩) / sqrt(2)
// 2 - |Ψ⁺⟩ = (|01⟩ + |10⟩) / sqrt(2)
// 3 - |Ψ⁻⟩ = (|01⟩ - |10⟩) / sqrt(2)
operation StatePrep_BellState (qs : Qubit[], state : Int) : () {
body {
H(qs[0]);
CNOT(qs[0], qs[1]);
// now we have |00⟩ + |11⟩ - modify it based on state arg
if (state % 2 == 1) {
// negative phase
Z(qs[1]);
}
if (state / 2 == 1) {
X(qs[1]);
}
}
}
operation T109_BellState_Test () : () {
body {
DistinguishStates_MultiQubit(2, 4, StatePrep_BellState, BellState);
}
}
// ------------------------------------------------------
// 0 - (|00⟩ + |01⟩ + |10⟩ + |11⟩) / 2
// 1 - (|00⟩ - |01⟩ + |10⟩ - |11⟩) / 2
// 2 - (|00⟩ + |01⟩ - |10⟩ - |11⟩) / 2
// 3 - (|00⟩ - |01⟩ - |10⟩ + |11⟩) / 2
operation StatePrep_TwoQubitState (qs : Qubit[], state : Int) : () {
body {
// start with state prep of basis vectors
StatePrep_BasisStateMeasurement(qs, state);
H(qs[0]);
H(qs[1]);
}
}
// ------------------------------------------------------
// 0 - ( |00⟩ - |01⟩ - |10⟩ - |11⟩) / 2
// 1 - (-|00⟩ + |01⟩ - |10⟩ - |11⟩) / 2
// 2 - (-|00⟩ - |01⟩ + |10⟩ - |11⟩) / 2
// 3 - (-|00⟩ - |01⟩ - |10⟩ + |11⟩) / 2
operation StatePrep_TwoQubitStatePartTwo (qs : Qubit[], state : Int) : () {
body {
// start with state prep of basis vectors
StatePrep_BasisStateMeasurement(qs, state);
// now apply all gates for unitary in reference impl (in reverse + adjoint)
ApplyToEach(X, qs);
(Controlled Z)([qs[0]], qs[1]);
ApplyToEach(X, qs);
ApplyToEach(H, qs);
ApplyToEach(X, qs);
(Controlled Z)([qs[0]], qs[1]);
ApplyToEach(X, qs);
SWAP(qs[0], qs[1]);
}
}
operation T110_TwoQubitState_Test () : () {
body {
DistinguishStates_MultiQubit(2, 4, StatePrep_TwoQubitState, TwoQubitState);
}
}
operation T111_TwoQubitStatePartTwo_Test () : () {
body {
DistinguishStates_MultiQubit(2, 4, StatePrep_TwoQubitStatePartTwo, TwoQubitStatePartTwo);
}
}
//////////////////////////////////////////////////////////////////
operation StatePrep_IsQubitZeroOrPlus (q : Qubit, state : Int) : () {
body {
if (state == 0) {
// convert |0⟩ to |0⟩
} else {
// convert |0⟩ to |+⟩
H(q);
}
}
}
// "Framework" operation for testing multi-qubit tasks for distinguishing states of an array of qubits
// with Int return. Framework tests against a threshold parameter for the fraction of runs that must succeed.
operation DistinguishStates_MultiQubit_Threshold (
Nqubit : Int,
Nstate : Int,
threshold : Double,
statePrep : ((Qubit, Int) => ()),
testImpl : (Qubit => Bool)
) : ()
{
body
{
let nTotal = 1000;
mutable nOk = 0;
using (qs = Qubit[Nqubit])
{
for (i in 1..nTotal)
{
// get a random integer to define the state of the qubits
let state = RandomInt(Nstate);
// do state prep: convert |0⟩ to outcome with return equal to state
statePrep(qs[0], state);
// get the solution's answer and verify that it's a match
let ans = testImpl(qs[0]);
if (ans == (state == 0)) {
set nOk = nOk + 1;
}
// we're not checking the state of the qubit after the operation
ResetAll(qs);
}
}
if (ToDouble(nOk) < threshold * ToDouble(nTotal)) {
fail $"{nTotal - nOk} test runs out of {nTotal} returned incorrect state which does not meet the required threshold of at least {threshold*100}%.";
}
}
}
// "Framework" operation for testing multi-qubit tasks for distinguishing states of an array of qubits
// with Int return. Framework tests against a threshold parameter for the fraction of runs that must succeed.
// Framework tests in the USD scenario, i.e., it is allowed to respond "inconclusive" (with some probability)
// up to given threshold, but it is never allowed to err if an actual conclusive response is given.
operation USD_DistinguishStates_MultiQubit_Threshold (
Nqubit : Int,
Nstate : Int,
thresholdInconcl : Double,
thresholdConcl : Double,
statePrep : ((Qubit, Int) => ()),
testImpl : (Qubit => Int)
) : ()
{
body
{
let nTotal = 10000;
mutable nInconc = 0; // counts total inconclusive answers
mutable nConclOne = 0; // counts total conclusive |0⟩ state identifications
mutable nConclPlus = 0; // counts total conclusive |+> state identifications
using (qs = Qubit[Nqubit])
{
for (i in 1..nTotal)
{
// get a random integer to define the state of the qubits
let state = RandomInt(Nstate);
// do state prep: convert |0⟩ to outcome with return equal to state
statePrep(qs[0], state);
// get the solution's answer and verify that it's a match
let ans = testImpl(qs[0]);
// check that the answer is actually in allowed range
if (ans < -1 || ans > 1) {
fail $"state {state} led to invalid response {ans}.";
}
// keep track of the number of inconclusive answers given
if (ans == -1) {
set nInconc = nInconc + 1;
}
if (ans == 0 && state == 0) {
set nConclOne = nConclOne + 1;
}
if (ans == 1 && state == 1) {
set nConclPlus = nConclPlus + 1;
}
// check if upon conclusive result the answer is actually correct
if ((ans == 0) && (state == 1) || (ans == 1) && (state == 0)) {
fail $"state {state} led to incorrect conclusive response {ans}.";
}
// we're not checking the state of the qubit after the operation
ResetAll(qs);
}
}
if (ToDouble(nInconc) > thresholdInconcl * ToDouble(nTotal)) {
fail $"{nInconc} test runs out of {nTotal} returned inconclusive which does not meet the required threshold of at most {thresholdInconcl*100}%.";
}
if (ToDouble(nConclOne) < thresholdConcl * ToDouble(nTotal)) {
fail $"Only {nConclOne} test runs out of {nTotal} returned conclusive |0⟩ which does not meet the required threshold of at least {thresholdConcl*100}%.";
}
if (ToDouble(nConclPlus) < thresholdConcl * ToDouble(nTotal)) {
fail $"Only {nConclPlus} test runs out of {nTotal} returned conclusive |+> which does not meet the required threshold of at least {thresholdConcl*100}%.";
}
}
}
operation T201_IsQubitZeroOrPlus_Test () : () {
body {
DistinguishStates_MultiQubit_Threshold(1, 2, 0.8, StatePrep_IsQubitZeroOrPlus, IsQubitPlusOrZero);
}
}
operation T202_IsQubitZeroOrPlusSimpleUSD_Test () : () {
body {
USD_DistinguishStates_MultiQubit_Threshold(1, 2, 0.8, 0.1, StatePrep_IsQubitZeroOrPlus, IsQubitPlusZeroOrInconclusiveSimpleUSD);
}
}
}