forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tests.qs
240 lines (216 loc) · 8.92 KB
/
Tests.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains testing harness for all tasks.
// You should not modify anything in this file.
// The tasks themselves can be found in Tasks.qs file.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.Superposition
{
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Extensions.Convert;
open Microsoft.Quantum.Extensions.Math;
open Microsoft.Quantum.Extensions.Testing;
// ------------------------------------------------------
operation AssertEqualOnZeroState (N : Int, testImpl : (Qubit[] => ()), refImpl : (Qubit[] => () : Adjoint)) : ()
{
body
{
using (qs = Qubit[N])
{
// apply operation that needs to be tested
testImpl(qs);
// apply adjoint reference operation and check that the result is |0⟩
(Adjoint refImpl)(qs);
// assert that all qubits end up in |0⟩ state
AssertAllZero(qs);
}
}
}
// ------------------------------------------------------
operation T01_PlusState_Test () : ()
{
body
{
AssertEqualOnZeroState(1, PlusState, PlusState_Reference);
}
}
// ------------------------------------------------------
operation T02_MinusState_Test () : ()
{
body
{
AssertEqualOnZeroState(1, MinusState, MinusState_Reference);
}
}
// ------------------------------------------------------
operation T03_UnequalSuperposition_Test () : ()
{
body
{
// cross-test
AssertEqualOnZeroState(1, UnequalSuperposition(_, 0.0), ApplyToEachA(I, _));
AssertEqualOnZeroState(1, UnequalSuperposition(_, 0.5 * PI()), ApplyToEachA(X, _));
AssertEqualOnZeroState(1, UnequalSuperposition(_, 0.5 * PI()), ApplyToEachA(Y, _));
AssertEqualOnZeroState(1, UnequalSuperposition(_, 0.25 * PI()), PlusState_Reference);
AssertEqualOnZeroState(1, UnequalSuperposition(_, 0.75 * PI()), MinusState_Reference);
for (i in 1..36) {
let alpha = 2.0 * PI() * ToDouble(i) / 36.0;
AssertEqualOnZeroState(1, UnequalSuperposition(_, alpha), UnequalSuperposition_Reference(_, alpha));
}
}
}
// ------------------------------------------------------
operation T04_BellState_Test () : ()
{
body
{
AssertEqualOnZeroState(2, BellState, BellState_Reference);
}
}
// ------------------------------------------------------
operation T05_AllBellStates_Test () : ()
{
body
{
for (i in 0..3) {
AssertEqualOnZeroState(2, AllBellStates(_, i), AllBellStates_Reference(_, i));
}
}
}
// ------------------------------------------------------
operation T06_GHZ_State_Test () : ()
{
body
{
// for N = 1 it's just |+⟩
AssertEqualOnZeroState(1, GHZ_State, PlusState_Reference);
// for N = 2 it's Bell state
AssertEqualOnZeroState(2, GHZ_State, BellState_Reference);
for (n in 3..9) {
AssertEqualOnZeroState(n, GHZ_State, GHZ_State_Reference);
}
}
}
// ------------------------------------------------------
operation T07_AllBasisVectorsSuperposition_Test () : ()
{
body
{
// for N = 1 it's just |+⟩
AssertEqualOnZeroState(1, AllBasisVectorsSuperposition, PlusState_Reference);
for (n in 2..9) {
AssertEqualOnZeroState(n, AllBasisVectorsSuperposition, AllBasisVectorsSuperposition_Reference);
}
}
}
// ------------------------------------------------------
operation T08_ZeroAndBitstringSuperposition_Test () : ()
{
body
{
// compare with results of previous operations
AssertEqualOnZeroState(1, ZeroAndBitstringSuperposition(_, [true]), PlusState_Reference);
AssertEqualOnZeroState(2, ZeroAndBitstringSuperposition(_, [true; true]), BellState_Reference);
AssertEqualOnZeroState(3, ZeroAndBitstringSuperposition(_, [true; true; true]), GHZ_State_Reference);
if (true) {
let b = [true; false];
AssertEqualOnZeroState(2, ZeroAndBitstringSuperposition(_, b),
ZeroAndBitstringSuperposition_Reference(_, b));
}
if (true) {
let b = [true; false; true];
AssertEqualOnZeroState(3, ZeroAndBitstringSuperposition(_, b),
ZeroAndBitstringSuperposition_Reference(_, b));
}
if (true) {
let b = [true; false; true; true; false; false];
AssertEqualOnZeroState(6, ZeroAndBitstringSuperposition(_, b),
ZeroAndBitstringSuperposition_Reference(_, b));
}
}
}
// ------------------------------------------------------
operation T09_TwoBitstringSuperposition_Test () : ()
{
body
{
// compare with results of previous operations
AssertEqualOnZeroState(1, TwoBitstringSuperposition(_, [true], [false]), PlusState_Reference);
AssertEqualOnZeroState(2, TwoBitstringSuperposition(_, [false; false], [true; true]), BellState_Reference);
AssertEqualOnZeroState(3, TwoBitstringSuperposition(_, [true; true; true], [false; false; false]), GHZ_State_Reference);
// compare with reference implementation
// diff in first position
for (i in 1..1)
{
let b1 = [false; true];
let b2 = [true; false];
AssertEqualOnZeroState(2, TwoBitstringSuperposition(_, b1, b2),
TwoBitstringSuperposition_Reference(_, b1, b2));
}
for (i in 1..1)
{
let b1 = [true; true; false];
let b2 = [false; true; true];
AssertEqualOnZeroState(3, TwoBitstringSuperposition(_, b1, b2),
TwoBitstringSuperposition_Reference(_, b1, b2));
}
// diff in last position
for (i in 1..1)
{
let b1 = [false; true; true; false];
let b2 = [false; true; true; true];
AssertEqualOnZeroState(4, TwoBitstringSuperposition(_, b1, b2),
TwoBitstringSuperposition_Reference(_, b1, b2));
}
// diff in the middle
for (i in 1..1)
{
let b1 = [true; false; false; false];
let b2 = [true; false; true; true];
AssertEqualOnZeroState(4, TwoBitstringSuperposition(_, b1, b2),
TwoBitstringSuperposition_Reference(_, b1, b2));
}
}
}
// ------------------------------------------------------
operation T10_WState_PowerOfTwo_Test () : ()
{
body
{
// separate check for N = 1 (return must be |1⟩)
using (qs = Qubit[1]) {
WState_PowerOfTwo(qs);
Assert([PauliZ], qs, One, "");
X(qs[0]);
}
AssertEqualOnZeroState(2, WState_PowerOfTwo, TwoBitstringSuperposition_Reference(_, [false; true], [true; false]));
AssertEqualOnZeroState(4, WState_PowerOfTwo, WState_PowerOfTwo_Reference);
AssertEqualOnZeroState(8, WState_PowerOfTwo, WState_PowerOfTwo_Reference);
AssertEqualOnZeroState(16, WState_PowerOfTwo, WState_PowerOfTwo_Reference);
}
}
// ------------------------------------------------------
operation T11_WState_Arbitrary_Test () : ()
{
body
{
// separate check for N = 1 (return must be |1⟩)
using (qs = Qubit[1]) {
WState_Arbitrary_Reference(qs);
Assert([PauliZ], qs, One, "");
X(qs[0]);
}
// cross-tests
AssertEqualOnZeroState(2, WState_Arbitrary, TwoBitstringSuperposition_Reference(_, [false; true], [true; false]));
AssertEqualOnZeroState(2, WState_Arbitrary, WState_PowerOfTwo_Reference);
AssertEqualOnZeroState(4, WState_Arbitrary, WState_PowerOfTwo_Reference);
AssertEqualOnZeroState(8, WState_Arbitrary, WState_PowerOfTwo_Reference);
AssertEqualOnZeroState(16, WState_Arbitrary, WState_PowerOfTwo_Reference);
for (i in 2..16) {
AssertEqualOnZeroState(i, WState_Arbitrary, WState_Arbitrary_Reference);
}
}
}
}