-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
42 lines (31 loc) · 1.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import logging
import hydra
import pytorch_lightning as pl
from omegaconf import DictConfig, OmegaConf
logger = logging.getLogger(__name__)
@hydra.main(config_path="configs", config_name="defaults")
def main(cfg):
pl.seed_everything(1234)
logger.info("\n" + OmegaConf.to_yaml(cfg))
# Instantiate all modules specified in the configs
model = hydra.utils.instantiate(
cfg.model, # Object to instantiate
# Don't instantiate optimizer submodules with hydra, let `configure_optimizers()` do it
_recursive_=False,
)
data_module = hydra.utils.instantiate(cfg.data)
# Let hydra manage direcotry outputs
tensorboard = pl.loggers.TensorBoardLogger(".", "", "", log_graph=True, default_hp_metric=False)
callbacks = [
pl.callbacks.ModelCheckpoint(monitor='loss/val'),
pl.callbacks.EarlyStopping(monitor='loss/val', patience=50),
]
trainer = pl.Trainer(
**OmegaConf.to_container(cfg.trainer),
logger=tensorboard,
callbacks=callbacks
)
trainer.fit(model, datamodule=data_module)
trainer.test(model, datamodule=data_module) # Optional
if __name__ == '__main__':
main()