-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils_token_level_task.py
442 lines (376 loc) · 18.6 KB
/
utils_token_level_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# coding: utf-8
# Copyright 2019 Sinovation Ventures AI Institute
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""utils for token level classification task."""
from __future__ import absolute_import, division, print_function
import logging
import os
import math
from random import shuffle
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id, ngram_ids, ngram_positions, ngram_lengths,
ngram_tuples, ngram_seg_ids, ngram_masks, valid_ids=None, label_mask=None):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.valid_ids = valid_ids
self.label_mask = label_mask
self.ngram_ids = ngram_ids
self.ngram_positions = ngram_positions
self.ngram_lengths = ngram_lengths
self.ngram_tuples = ngram_tuples
self.ngram_seg_ids = ngram_seg_ids
self.ngram_masks = ngram_masks
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
'''
read file
return format :
[ ['EU', 'B-ORG'], ['rejects', 'O'], ['German', 'B-MISC'], ['call', 'O'], ['to', 'O'], ['boycott', 'O'], ['British', 'B-MISC'], ['lamb', 'O'], ['.', 'O'] ]
'''
f = open(input_file, encoding="utf-8")
data = []
sentence = []
label = []
for line in f:
if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == "\n":
if len(sentence) > 0:
data.append((sentence, label))
sentence = []
label = []
continue
splits = line.split()
sentence.append(splits[0])
label.append(splits[-1])
if len(sentence) > 0:
data.append((sentence, label))
sentence = []
label = []
return data
class PosProcessor(DataProcessor):
"""Processor for the cws POS CTB5 data set."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
# return ["NT", "JJ", "NR", "PU", "NN", "[CLS]", "[SEP]"]
# return ['CD', 'SB', 'DER', 'IJ', 'NR', 'CS', 'MSP', 'NN', 'LC', 'VV', 'M', 'OD', 'VE', 'AD', 'DT', 'PU', 'ETC', 'NT', 'SP','NP', 'PN', 'P', 'VP', 'VC', 'VA', 'DEC', 'FW', 'AS', 'X', 'DEG', 'BA', 'DEV', 'CC', 'JJ', 'LB', "[CLS]", "[SEP]"]
# return ['B-NR', 'E-NR', 'B-NN', 'E-NN', 'S-CC', 'B-VV', 'E-VV', 'I-NN', 'B-NT', 'E-NT', 'S-NN', 'S-PU', 'I-NR', 'S-LC', 'S-AS', 'S-ETC', 'S-DEC', 'B-CD', 'I-CD', 'E-CD', 'S-M', 'S-DEG', 'B-JJ', 'E-JJ', 'S-VC', 'S-CD', 'I-JJ', 'B-AD', 'E-AD', 'S-AD', 'S-JJ', 'S-P', 'S-PN', 'B-VA', 'E-VA', 'S-DEV', 'S-VV', 'B-LC', 'E-LC', 'B-DT', 'E-DT', 'S-SB', 'B-OD', 'E-OD', 'B-P', 'E-P', 'S-VE', 'S-DT', 'B-M', 'E-M', 'B-CS', 'E-CS', 'B-PN', 'E-PN', 'S-VA', 'I-NT', 'I-AD', 'I-M', 'B-CC', 'E-CC', 'S-OD', 'S-MSP', 'S-NR', 'S-BA', 'I-VV', 'B-FW', 'I-FW', 'E-FW', 'B-PU', 'E-PU', 'S-CS', 'S-NT', 'I-OD', 'S-LB', 'I-VA', 'B-ETC', 'E-ETC', 'B-VE', 'E-VE', 'I-P', 'B-NP', 'E-NP', 'S-DER', 'S-SP', 'B-SP', 'E-SP', 'I-PU', 'I-PN', 'I-CC', 'B-IJ', 'E-IJ', 'I-DT', 'B-MSP', 'E-MSP', 'S-IJ', 'S-X', 'B-VC', 'I-VC', 'E-VC', 'S-FW', 'I-CS', 'S-NP', 'S-VP', "[CLS]", "[SEP]"]
return ['NR', 'NN', 'CC', 'VV', 'NT', 'PU', 'LC', 'AS', 'ETC', 'DEC', 'CD', 'M', 'DEG', 'JJ', 'VC', 'AD', 'P',
'PN', 'VA', 'DEV', 'DT', 'SB', 'OD', 'VE', 'CS', 'MSP', 'BA', 'FW', 'LB', 'NP', 'DER', 'SP', 'IJ', 'X',
'VP', "[CLS]", "[SEP]"]
def _create_examples(self, lines, set_type):
examples = []
for i, (sentence, label) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = ' '.join(sentence)
text_b = None
label = label
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class GeniaProcessor(DataProcessor):
"""Processor for the Genia data set."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
return ['B-G#protein_domain_or_region', 'I-G#cell_component', 'I-G#atom', 'B-G#other_artificial_source',
'I-G#DNA_family_or_group', 'I-G#protein_molecule', 'promoter', 'I-G#nucleotide',
'B-G#DNA_domain_or_region',
'B-G#amino_acid_monomer', 'B-G#DNA_substructure', 'I-G#polynucleotide', 'B-G#protein_molecule',
'B-G#other_organic_compound', 'I-G#tissue', 'B-G#mono_cell', 'I-G#RNA_N/A', 'B-G#inorganic',
'I-G#protein_domain_or_region', 'B-G#nucleotide', 'I-G#inorganic', 'I-G#DNA_substructure',
'B-G#DNA_molecule',
'I-G#DNA_molecule', 'I-G#protein_substructure', 'B-G#other_name', 'I-G#other_organic_compound',
'I-G#RNA_domain_or_region', 'I-G#RNA_molecule', 'B-G#RNA_family_or_group', 'I-G#cell_line',
'B-G#polynucleotide',
'I-G#peptide', 'B-G#virus', 'I-G#cell_type', 'B-G#atom', 'B-G#DNA_N/A', 'I-G#carbohydrate',
'I-G#protein_complex',
'B-G#cell_type', 'I-G#DNA_domain_or_region', 'B-G#cell_component', 'B-G#protein_family_or_group',
'I-G#multi_cell',
'I-G#body_part', 'B-G#cell_line', 'I-G#lipid', 'I-G#other_artificial_source',
'B-G#RNA_domain_or_region',
'B-G#protein_N/A', 'B-G#tissue', 'B-G#RNA_molecule', 'B-G#multi_cell', 'B-G#DNA_family_or_group',
'B-G#protein_subunit', 'I-G#protein_N/A', 'I-G#RNA_family_or_group', 'B-G#body_part', 'B-G#peptide',
'I-G#other_name', 'I-G#virus', 'I-G#protein_subunit', 'B-G#lipid', 'B-G#protein_substructure',
'I-G#DNA_N/A',
'B-G#protein_complex', 'I-G#protein_family_or_group', 'B-G#RNA_N/A', 'O', 'B-G#carbohydrate',
'I-G#amino_acid_monomer', 'I-G#mono_cell', "[CLS]", "[SEP]"]
def _create_examples(self, lines, set_type):
examples = []
for i, (sentence, label) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = ' '.join(sentence)
text_b = None
label = label
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class CwsmsraProcessor(DataProcessor):
"""Processor for the cws msra data set."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
return ["B", "I", "E", "S", "[CLS]", "[SEP]"]
def _create_examples(self, lines, set_type):
examples = []
for i, (sentence, label) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = ' '.join(sentence)
text_b = None
label = label
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class PeopledailyProcessor(DataProcessor):
"""Processor for the CoNLL-2003 data set."""
def __init__(self, dataset):
super(PeopledailyProcessor, self).__init__()
self.dataset = dataset.lower()
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.txt")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.txt")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.txt")), "test")
def get_labels(self):
if "ontonote" in self.dataset:
return ["O", "I-LOC", "B-ORG", "I-PER", "I-GPE", "B-LOC", "B-GPE", "B-PER", "I-ORG", "[CLS]", "[SEP]"]
elif "weibo" in self.dataset:
return ["O", "B-PER.NOM", "I-PER.NOM", "B-LOC.NAM", "I-LOC.NAM", "B-PER.NAM", "I-PER.NAM",
"B-GPE.NAM", "I-GPE.NAM", "B-ORG.NAM", "I-ORG.NAM", "B-ORG.NOM", "I-ORG.NOM",
"B-LOC.NOM", "I-LOC.NOM", "B-GPE.NOM", "I-GPE.NOM", "[CLS]", "[SEP]"]
elif "resume" in self.dataset:
return ["O", "I-ORG", "I-RACE", "I-PRO", "I-NAME", "B-RACE", "B-ORG", "I-LOC", "I-TITLE", "I-EDU", "B-LOC",
"B-TITLE", "B-CONT", "B-NAME", "I-CONT", "B-PRO", "B-EDU", "[CLS]", "[SEP]"]
else:
raise ValueError("dataset can not be {}".format(self.dataset))
def _create_examples(self, lines, set_type):
examples = []
for i, (sentence, label) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = ' '.join(sentence)
text_b = None
label = label
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class ConllProcessor(DataProcessor):
"""Processor for the CoNLL-2003 data set."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "[CLS]", "[SEP]"]
def _create_examples(self, lines, set_type):
examples = []
for i, (sentence, label) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = ' '.join(sentence)
text_b = None
label = label
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, ngram_dict):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {label: i for i, label in enumerate(label_list, 1)}
features = []
for (ex_index, example) in enumerate(examples):
textlist = example.text_a.split(' ')
labellist = example.label
tokens = []
labels = []
valid = []
label_mask = []
for i, word in enumerate(textlist):
token = tokenizer.tokenize(word)
tokens.extend(token)
label_1 = labellist[i]
for m in range(len(token)):
if m == 0:
labels.append(label_1)
valid.append(1)
label_mask.append(1)
else:
valid.append(0)
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)]
labels = labels[0:(max_seq_length - 2)]
valid = valid[0:(max_seq_length - 2)]
label_mask = label_mask[0:(max_seq_length - 2)]
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]")
segment_ids.append(0)
valid.insert(0, 1)
label_mask.insert(0, 1)
label_ids.append(label_map["[CLS]"])
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
if len(labels) > i:
label_ids.append(label_map[labels[i]])
ntokens.append("[SEP]")
segment_ids.append(0)
valid.append(1)
label_mask.append(1)
label_ids.append(label_map["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
input_mask = [1] * len(input_ids)
label_mask = [1] * len(label_ids)
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
label_ids.append(0)
valid.append(1)
label_mask.append(0)
while len(label_ids) < max_seq_length:
label_ids.append(0)
label_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
assert len(valid) == max_seq_length
assert len(label_mask) == max_seq_length
# ----------- code for ngram BEGIN-----------
ngram_matches = []
# Filter the ngram segment from 2 to 7 to check whether there is a ngram
for p in range(2, 8):
for q in range(0, len(tokens) - p + 1):
character_segment = tokens[q:q + p]
# j is the starting position of the ngram
# i is the length of the current ngram
character_segment = tuple(character_segment)
if character_segment in ngram_dict.ngram_to_id_dict:
ngram_index = ngram_dict.ngram_to_id_dict[character_segment]
ngram_matches.append([ngram_index, q, p, character_segment])
shuffle(ngram_matches)
max_ngram_in_seq_proportion = math.ceil((len(tokens) / max_seq_length) * ngram_dict.max_ngram_in_seq)
if len(ngram_matches) > max_ngram_in_seq_proportion:
ngram_matches = ngram_matches[:max_ngram_in_seq_proportion]
ngram_ids = [ngram[0] for ngram in ngram_matches]
ngram_positions = [ngram[1] for ngram in ngram_matches]
ngram_lengths = [ngram[2] for ngram in ngram_matches]
ngram_tuples = [ngram[3] for ngram in ngram_matches]
ngram_seg_ids = [0 if position < (len(tokens) + 2) else 1 for position in ngram_positions]
import numpy as np
ngram_mask_array = np.zeros(ngram_dict.max_ngram_in_seq, dtype=np.bool)
ngram_mask_array[:len(ngram_ids)] = 1
# record the masked positions
ngram_positions_matrix = np.zeros(shape=(max_seq_length, ngram_dict.max_ngram_in_seq), dtype=np.int32)
for i in range(len(ngram_ids)):
ngram_positions_matrix[ngram_positions[i]:ngram_positions[i] + ngram_lengths[i], i] = 1.0
# Zero-pad up to the max ngram in seq length.
padding = [0] * (ngram_dict.max_ngram_in_seq - len(ngram_ids))
ngram_ids += padding
ngram_lengths += padding
ngram_seg_ids += padding
# ----------- code for ngram END-----------
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_ids,
ngram_ids=ngram_ids,
ngram_positions=ngram_positions_matrix,
ngram_lengths=ngram_lengths,
ngram_tuples=ngram_tuples,
ngram_seg_ids=ngram_seg_ids,
ngram_masks=ngram_mask_array,
valid_ids=valid,
label_mask=label_mask))
return features
processors = {
"conll":ConllProcessor,
"peopledaily": PeopledailyProcessor,
"msra": PeopledailyProcessor,
"cwsmsra": CwsmsraProcessor,
"cwspku": CwsmsraProcessor,
"genia": GeniaProcessor,
"pos":PosProcessor
}