-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhetmc_model.py
749 lines (622 loc) · 32.7 KB
/
hetmc_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
from __future__ import absolute_import, division, print_function
import math
import os
import numpy as np
import torch
import subprocess
from torch import nn
from pytorch_pretrained_bert.modeling import BertModel
from pytorch_pretrained_bert.tokenization import BertTokenizer
import pytorch_pretrained_zen as zen
from torch.nn import CrossEntropyLoss
from pytorch_pretrained_bert.crf import CRF
from hetmc_helper import load_json, save_json, read_dialog
DEFAULT_HPARA = {
'max_seq_length': 128,
'max_ngram_size': 128,
'use_bert': False,
'use_zen': False,
'do_lower_case': False,
'use_memory': False,
'use_party': False,
'use_department': False,
'use_disease': False,
'utterance_encoder': 'biLSTM',
'decoder': 'softmax',
'lstm_hidden_size': 150,
'max_dialog_length': 80
}
class LayerNormalization(nn.Module):
def __init__(self, d_hid, eps=1e-3, affine=True):
super(LayerNormalization, self).__init__()
self.eps = eps
self.affine = affine
if self.affine:
self.a_2 = nn.Parameter(torch.ones(d_hid), requires_grad=True)
self.b_2 = nn.Parameter(torch.zeros(d_hid), requires_grad=True)
def forward(self, z):
if z.size(-1) == 1:
return z
mu = torch.mean(z, keepdim=True, dim=-1)
sigma = torch.std(z, keepdim=True, dim=-1)
ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps)
if self.affine:
ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(ln_out)
return ln_out
class Memory(nn.Module):
def __init__(self, hidden_size, vocab_size):
super(Memory, self).__init__()
self.temper = hidden_size ** 0.5
self.hidden_size = hidden_size
# self.word_embedding_a = nn.Embedding(config.vocab_size, config.hidden_size)
self.word_embedding_c = nn.Embedding(vocab_size, hidden_size)
# self.linear_1 = nn.Linear(config.word_embedding_dim, config.hidden_size, bias=False)
# self.linear_2 = nn.Linear(config.word_embedding_dim, 64)
self.memory_encoder = nn.LSTM(input_size=hidden_size, hidden_size=int(hidden_size / 2),
bidirectional=True, batch_first=True)
self.layer_norm = LayerNormalization(hidden_size)
def memory_embeddings(self, input_ids):
# input_ids: (batch_size * dialog_length, word_length)
# word_embedding_a: (batch_size * dialog_length, word_length, hidden_size)
# word_embedding_a = self.word_embedding_a(input_ids)
word_embedding_c = self.word_embedding_c(input_ids)
self.memory_encoder.flatten_parameters()
word_embedding_c, _ = self.memory_encoder(word_embedding_c)
word_embedding_c = word_embedding_c[:, -1, :]
# word_embedding_c = self.layer_norm(word_embedding_c)
return word_embedding_c
def forward(self, embedding_c, hidden_state, party_mask_metrix):
# word_seq: (batch_size, word_seq_len)
# hidden_state: (batch_size, character_seq_len, hidden_size)
# mask_matrix: (batch_size, character_seq_len, word_seq_len)
# embedding (batch_size, word_seq_len, hidden_size)
# embedding_a = self.word_embedding_a(word_seq)
# embedding_c: (batch_size, word_seq_len, hidden_size)
# embedding_c = self.word_embedding_c(label_value_matrix)
tmp_hidden_state = hidden_state.permute(0, 2, 1)
# u: (batch_size, character_seq_len, word_seq_len)
# u = torch.matmul(hidden_state, tmp_hidden_state) / self.temper
u = torch.matmul(hidden_state, tmp_hidden_state) / self.hidden_size
# print('u shape:', u.shape)
# p (batch_size, character_seq_len, word_seq_len)
party_mask_metrix = torch.clamp(party_mask_metrix, 0, 1)
exp_u = torch.exp(u)
delta_exp_u = torch.mul(exp_u, party_mask_metrix)
sum_delta_exp_u = torch.stack([torch.sum(delta_exp_u, 2)] * delta_exp_u.shape[2], 2)
p = torch.div(delta_exp_u, sum_delta_exp_u + 1e-10)
# character_attention (batch_size, character_seq_len, hidden_state)
# o = torch.sum(o, 2)
o = torch.bmm(p, embedding_c)
return o
class HET(nn.Module):
def __init__(self, word2id, label2id, hpara, model_path, department2id=None, disease2id=None):
super().__init__()
self.word2id = word2id
self.department2id = None
self.disease2id = None
self.label2id = label2id
self.party2id = None
self.hpara = hpara
self.num_labels = len(self.label2id)
self.max_seq_length = self.hpara['max_seq_length']
self.use_memory = self.hpara['use_memory']
self.use_department = self.hpara['use_department']
self.use_party = self.hpara['use_party']
self.use_disease = self.hpara['use_disease']
self.decoder = self.hpara['decoder']
self.lstm_hidden_size = self.hpara['lstm_hidden_size']
self.max_dialog_length = self.hpara['max_dialog_length']
self.bert_tokenizer = None
self.bert = None
self.zen_tokenizer = None
self.zen = None
self.zen_ngram_dict = None
if self.hpara['use_bert']:
self.bert_tokenizer = BertTokenizer.from_pretrained(model_path, do_lower_case=self.hpara['do_lower_case'])
self.bert = BertModel.from_pretrained(model_path, cache_dir='')
hidden_size = self.bert.config.hidden_size
self.dropout = nn.Dropout(self.bert.config.hidden_dropout_prob)
elif self.hpara['use_zen']:
self.zen_tokenizer = zen.BertTokenizer.from_pretrained(model_path, do_lower_case=self.hpara['do_lower_case'])
self.zen_ngram_dict = zen.ZenNgramDict(model_path, tokenizer=self.zen_tokenizer)
self.zen = zen.modeling.ZenModel.from_pretrained(model_path, cache_dir='')
hidden_size = self.zen.config.hidden_size
self.dropout = nn.Dropout(self.zen.config.hidden_dropout_prob)
else:
raise ValueError()
ori_hidden_size = hidden_size
if self.use_memory:
self.memory = Memory(hidden_size, len(word2id))
hidden_size = hidden_size * 2
else:
self.memory = None
if self.use_party:
self.party_embedding = nn.Embedding(5, ori_hidden_size)
hidden_size += ori_hidden_size
self.party2id = {'<PAD>': 0, '<UNK>': 1, 'P': 2, 'D': 3}
else:
self.party_embedding = None
utterance_hidden_size = hidden_size
if self.hpara['utterance_encoder'] == 'LSTM':
self.utterance_encoder = nn.LSTM(input_size=hidden_size, hidden_size=self.lstm_hidden_size,
bidirectional=False, batch_first=True)
utterance_hidden_size = self.lstm_hidden_size
elif self.hpara['utterance_encoder'] == 'biLSTM':
self.utterance_encoder = nn.LSTM(input_size=hidden_size, hidden_size=self.lstm_hidden_size,
bidirectional=True, batch_first=True)
utterance_hidden_size = self.lstm_hidden_size * 2
else:
self.utterance_encoder = None
if self.use_department:
self.department_embedding = nn.Embedding(len(department2id), utterance_hidden_size)
self.department2id = department2id
else:
self.department_embedding = None
if self.use_disease:
self.disease_embedding = nn.Embedding(len(disease2id), utterance_hidden_size)
self.disease2id = disease2id
else:
self.disease_embedding = None
if self.use_department and self.use_disease:
utterance_hidden_size = utterance_hidden_size * 3
elif self.use_department or self.use_disease:
utterance_hidden_size = utterance_hidden_size * 2
self.classifier = nn.Linear(utterance_hidden_size, self.num_labels)
if self.decoder == 'softmax':
self.loss_fct = CrossEntropyLoss(ignore_index=0)
elif self.decoder == 'crf':
self.crf = CRF(self.num_labels, batch_first=True)
else:
raise ValueError()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
attention_mask_label=None, label_mask=None,
party_mask=None, party_ids=None, department_ids=None, disease_ids=None,
input_ngram_ids=None, ngram_position_matrix=None):
batch_size = input_ids.shape[0]
dialog_length = input_ids.shape[1]
utterance_length = input_ids.shape[2]
input_ids = input_ids.view(batch_size * dialog_length, utterance_length)
token_type_ids = token_type_ids.view(batch_size * dialog_length, utterance_length)
attention_mask = attention_mask.view(batch_size * dialog_length, utterance_length)
if self.bert is not None:
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
elif self.zen is not None:
ngram_position_matrix = ngram_position_matrix.view(batch_size * dialog_length, utterance_length, -1)
input_ngram_ids = input_ngram_ids.view(batch_size * dialog_length, -1)
sequence_output, _ = self.zen(input_ids, input_ngram_ids=input_ngram_ids,
ngram_position_matrix=ngram_position_matrix,
token_type_ids=token_type_ids, attention_mask=attention_mask,
output_all_encoded_layers=False)
else:
raise ValueError()
word_embedding_c = None
if self.use_memory:
word_embedding_c = self.memory.memory_embeddings(input_ids)
tmp_sequence_output = sequence_output.view(batch_size, dialog_length, utterance_length, -1)
# word_embedding_a = word_embedding_a.view(batch_size, dialog_length, -1)
sequence_output = tmp_sequence_output[:, :, 0]
tmp_label_mask = torch.stack([label_mask] * sequence_output.shape[-1], 2)
sequence_output = torch.mul(sequence_output, tmp_label_mask)
if self.use_memory:
word_embedding_c = word_embedding_c.view(batch_size, dialog_length, -1)
memory_output = self.memory(word_embedding_c, sequence_output, party_mask)
sequence_output = torch.cat((sequence_output, memory_output), 2)
sequence_output = self.dropout(sequence_output)
#
if self.use_party:
party_embeddings = self.party_embedding(party_ids)
sequence_output = torch.cat((sequence_output, party_embeddings), dim=2)
#
if self.utterance_encoder is not None:
self.utterance_encoder.flatten_parameters()
utterance_output, _ = self.utterance_encoder(sequence_output)
else:
utterance_output = sequence_output
if self.use_department:
department_embeddings = self.department_embedding(department_ids)
utterance_output = torch.cat((utterance_output, department_embeddings), dim=2)
if self.use_disease:
disease_embeddings = self.disease_embedding(disease_ids)
utterance_output = torch.cat((utterance_output, disease_embeddings), dim=2)
tmp_label_mask = torch.stack([label_mask] * utterance_output.shape[-1], 2)
utterance_output = torch.mul(utterance_output, tmp_label_mask)
logits = self.classifier(utterance_output)
if labels is not None:
if self.decoder == 'softmax':
total_loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.decoder == 'crf':
total_loss = -1 * self.crf(emissions=logits, tags=labels, mask=attention_mask_label)
else:
raise ValueError()
return total_loss
else:
if self.decoder == 'softmax':
scores = torch.argmax(nn.functional.log_softmax(logits, dim=2), dim=2)
elif self.decoder == 'crf':
scores = self.crf.decode(logits, attention_mask_label)[0]
else:
raise ValueError()
return scores
@staticmethod
def init_hyper_parameters(args):
hyper_parameters = DEFAULT_HPARA.copy()
hyper_parameters['max_seq_length'] = args.max_seq_length
hyper_parameters['max_ngram_size'] = args.max_ngram_size
hyper_parameters['use_bert'] = args.use_bert
hyper_parameters['use_zen'] = args.use_zen
hyper_parameters['do_lower_case'] = args.do_lower_case
hyper_parameters['use_memory'] = args.use_memory
hyper_parameters['use_party'] = args.use_party
hyper_parameters['use_department'] = args.use_department
hyper_parameters['use_disease'] = args.use_disease
hyper_parameters['utterance_encoder'] = args.utterance_encoder
hyper_parameters['decoder'] = args.decoder
hyper_parameters['lstm_hidden_size'] = args.lstm_hidden_size
hyper_parameters['max_dialog_length'] = args.max_dialog_length
return hyper_parameters
@classmethod
def load_model(cls, model_path):
label2id = load_json(os.path.join(model_path, 'label2id.json'))
hpara = load_json(os.path.join(model_path, 'hpara.json'))
department2id_path = os.path.join(model_path, 'department2id.json')
department2id = load_json(department2id_path) if os.path.exists(department2id_path) else None
word2id_path = os.path.join(model_path, 'word2id.json')
word2id = load_json(word2id_path) if os.path.exists(word2id_path) else None
disease2id_path = os.path.join(model_path, 'disease2id.json')
disease2id = load_json(disease2id_path) if os.path.exists(disease2id_path) else None
res = cls(model_path=model_path, label2id=label2id, hpara=hpara,
department2id=department2id, word2id=word2id, disease2id=disease2id)
res.load_state_dict(torch.load(os.path.join(model_path, 'pytorch_model.bin')))
return res
def save_model(self, output_dir, vocab_dir):
output_model_path = os.path.join(output_dir, 'pytorch_model.bin')
torch.save(self.state_dict(), output_model_path)
label_map_file = os.path.join(output_dir, 'label2id.json')
if not os.path.exists(label_map_file):
save_json(label_map_file, self.label2id)
save_json(os.path.join(output_dir, 'hpara.json'), self.hpara)
if self.department2id is not None:
save_json(os.path.join(output_dir, 'department2id.json'), self.department2id)
if self.word2id is not None:
save_json(os.path.join(output_dir, 'word2id.json'), self.word2id)
if self.disease2id is not None:
save_json(os.path.join(output_dir, 'disease2id.json'), self.disease2id)
output_config_file = os.path.join(output_dir, 'config.json')
with open(output_config_file, "w", encoding='utf-8') as writer:
if self.bert:
writer.write(self.bert.config.to_json_string())
elif self.zen:
writer.write(self.zen.config.to_json_string())
else:
raise ValueError()
output_bert_config_file = os.path.join(output_dir, 'bert_config.json')
command = 'cp ' + str(output_config_file) + ' ' + str(output_bert_config_file)
subprocess.run(command, shell=True)
if self.bert or self.zen:
vocab_name = 'vocab.txt'
else:
raise ValueError()
vocab_path = os.path.join(vocab_dir, vocab_name)
command = 'cp ' + str(vocab_path) + ' ' + str(os.path.join(output_dir, vocab_name))
subprocess.run(command, shell=True)
if self.zen:
ngram_name = 'ngram.txt'
ngram_path = os.path.join(vocab_dir, ngram_name)
command = 'cp ' + str(ngram_path) + ' ' + str(os.path.join(output_dir, ngram_name))
subprocess.run(command, shell=True)
@staticmethod
def data2example(data, flag=''):
examples = []
for i, (utterance, label, party, summary, max_utterance_len, party_mask, department, disease) in enumerate(data):
guid = "%s-%s" % (flag, i)
text_a = utterance
text_b = None
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label,
party=party, summary=summary, max_utterance_len=max_utterance_len,
party_mask=party_mask, department=department, disease=disease))
return examples
def convert_examples_to_features(self, examples):
features = []
tokenizer = self.zen_tokenizer if self.zen_tokenizer is not None else self.bert_tokenizer
# -------- max ngram size --------
max_utterance_length = min(int(max([example.max_utterance_len for example in examples]) * 1.1 + 2),
self.max_seq_length)
max_seq_length = max_utterance_length
max_dialog_length = min(max(max([len(example.text_a) for example in examples]), 1), self.max_dialog_length)
# -------- max ngram size --------
for (ex_index, example) in enumerate(examples):
valid = [[] for _ in range(max_dialog_length)]
tokens = [[] for _ in range(max_dialog_length)]
segment_ids = [[] for _ in range(max_dialog_length)]
input_ids = [[] for _ in range(max_dialog_length)]
input_mask = [[] for _ in range(max_dialog_length)]
input_id_len = [1 for _ in range(max_dialog_length)]
party_mask = [[] for _ in range(max_dialog_length)]
for i in range(max_dialog_length):
if i < len(example.text_a):
utterance = example.text_a[i]
party = example.party[i]
if party == 'P':
party_mask[i] = example.party_mask['P']
elif party == 'D':
party_mask[i] = example.party_mask['D']
else:
raise ValueError()
if len(party_mask[i]) > max_dialog_length:
party_mask[i] = party_mask[i][:max_dialog_length]
while len(party_mask[i]) < max_dialog_length:
party_mask[i].append(0)
for word in utterance:
token = tokenizer.tokenize(word)
tokens[i].extend(token)
for m in range(len(token)):
if m == 0:
valid[i].append(1)
else:
valid[i].append(0)
if len(tokens[i]) >= max_utterance_length - 1:
tokens[i] = tokens[i][0:(max_utterance_length - 2)]
valid[i] = valid[i][0:(max_utterance_length - 2)]
ntokens = []
ntokens.append("[CLS]")
segment_ids[i].append(0)
valid[i].insert(0, 1)
for token in tokens[i]:
ntokens.append(token)
segment_ids[i].append(0)
ntokens.append("[SEP]")
segment_ids[i].append(0)
valid[i].append(1)
# ntokens: ['[CLS]', '我' ... , '人', '[SEP]'] length: 5 + 2
# valid: [1, ..., 1] length 5 + 2 (前后加 1)
# label_mask: [1, ..., 1] length 5 + 2 (前后加 1)
# label_ids: [6, 5, 5, 2, 3, 4, 7] (前后加 [CLS] 和 [SEP] 的标签) length 5 + 2
# segment_id: [0, 0, ..., 0] length 7
input_ids[i] = tokenizer.convert_tokens_to_ids(ntokens)
# input_ids: [1, 2, 3, .. , 7] length 7
for _ in range(len(input_ids[i])):
input_mask[i].append(1)
input_id_len[i] = len(input_ids[i])
while len(input_ids[i]) < max_utterance_length:
input_ids[i].append(0)
input_mask[i].append(0)
segment_ids[i].append(0)
valid[i].append(1)
while len(party_mask[i]) < max_dialog_length:
party_mask[i].append(0)
assert len(input_ids[i]) == len(input_mask[i])
assert len(input_ids[i]) == len(segment_ids[i])
assert len(input_ids[i]) == len(valid[i])
assert len(input_ids) == max_dialog_length
assert len(input_ids[-1]) == max_utterance_length
labellist = example.label
label_mask = []
label_ids = []
for label in labellist:
label_id = self.label2id[label] if label in self.label2id else self.label2id['<UNK>']
label_ids.append(label_id)
label_mask.append(1)
if len(label_ids) > max_dialog_length:
label_ids = label_ids[:max_dialog_length]
label_mask = label_mask[:max_dialog_length]
while len(label_ids) < max_dialog_length:
label_ids.append(0)
label_mask.append(0)
partylist = example.party
if self.party2id is not None:
party_ids = []
for party in partylist:
party_ids.append(self.party2id[party])
if len(party_ids) > max_dialog_length:
party_ids = party_ids[:max_dialog_length]
while len(party_ids) < max_dialog_length:
party_ids.append(0)
else:
party_ids = None
if self.department2id is not None:
department_ids = []
if example.department in self.department2id:
department_id = self.department2id[example.department]
else:
department_id = self.department2id['<UNK>']
for _ in partylist:
department_ids.append(department_id)
if len(department_ids) > max_dialog_length:
department_ids = department_ids[:max_dialog_length]
while len(department_ids) < max_dialog_length:
department_ids.append(0)
else:
department_ids = None
if self.disease2id is not None:
disease_ids = []
if example.disease in self.disease2id:
disease_id = self.disease2id[example.disease]
else:
disease_id = self.disease2id['<UNK>']
for _ in partylist:
disease_ids.append(disease_id)
if len(disease_ids) > max_dialog_length:
disease_ids = disease_ids[:max_dialog_length]
while len(disease_ids) < max_dialog_length:
disease_ids.append(0)
else:
disease_ids = None
assert len(label_ids) == len(label_mask)
assert len(label_ids) == max_dialog_length
assert len(label_ids) == len(party_mask)
assert len(label_ids) == len(party_mask[-1])
if self.zen_ngram_dict is not None:
all_ngram_ids = []
all_ngram_positions_matrix = []
# all_ngram_lengths = []
# all_ngram_tuples = []
# all_ngram_seg_ids = []
# all_ngram_mask_array = []
for token_list in tokens:
ngram_matches = []
# Filter the ngram segment from 2 to 7 to check whether there is a ngram
for p in range(2, 8):
for q in range(0, len(token_list) - p + 1):
character_segment = token_list[q:q + p]
# j is the starting position of the ngram
# i is the length of the current ngram
character_segment = tuple(character_segment)
if character_segment in self.zen_ngram_dict.ngram_to_id_dict:
ngram_index = self.zen_ngram_dict.ngram_to_id_dict[character_segment]
ngram_matches.append([ngram_index, q, p, character_segment])
# random.shuffle(ngram_matches)
ngram_matches = sorted(ngram_matches, key=lambda s: s[0])
max_ngram_in_seq_proportion = math.ceil(
(len(token_list) / max_seq_length) * self.zen_ngram_dict.max_ngram_in_seq)
if len(ngram_matches) > max_ngram_in_seq_proportion:
ngram_matches = ngram_matches[:max_ngram_in_seq_proportion]
ngram_ids = [ngram[0] for ngram in ngram_matches]
ngram_positions = [ngram[1] for ngram in ngram_matches]
ngram_lengths = [ngram[2] for ngram in ngram_matches]
# ngram_tuples = [ngram[3] for ngram in ngram_matches]
# ngram_seg_ids = [0 if position < (len(tokens) + 2) else 1 for position in ngram_positions]
ngram_mask_array = np.zeros(self.zen_ngram_dict.max_ngram_in_seq, dtype=np.bool)
ngram_mask_array[:len(ngram_ids)] = 1
# record the masked positions
ngram_positions_matrix = np.zeros(shape=(max_seq_length, self.zen_ngram_dict.max_ngram_in_seq),
dtype=np.int32)
for i in range(len(ngram_ids)):
ngram_positions_matrix[ngram_positions[i]:ngram_positions[i] + ngram_lengths[i], i] = 1.0
# Zero-pad up to the max ngram in seq length.
padding = [0] * (self.zen_ngram_dict.max_ngram_in_seq - len(ngram_ids))
ngram_ids += padding
# ngram_lengths += padding
# ngram_seg_ids += padding
all_ngram_ids.append(ngram_ids)
all_ngram_positions_matrix.append(ngram_positions_matrix)
# all_ngram_lengths.append(ngram_lengths)
# all_ngram_tuples.append(ngram_tuples)
# all_ngram_seg_ids.append(ngram_seg_ids)
# all_ngram_mask_array.append(ngram_mask_array)
while len(all_ngram_ids) < max_dialog_length:
all_ngram_ids.append([0] * self.zen_ngram_dict.max_ngram_in_seq)
all_ngram_positions_matrix.append(np.zeros(shape=(max_seq_length, self.zen_ngram_dict.max_ngram_in_seq),
dtype=np.int32))
else:
all_ngram_ids = None
all_ngram_positions_matrix = None
# all_ngram_lengths = None
# all_ngram_tuples = None
# all_ngram_seg_ids = None
# all_ngram_mask_array = None
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_ids,
valid_ids=valid,
label_mask=label_mask,
input_id_len=input_id_len,
party_mask=party_mask,
party=party_ids,
department=department_ids,
disease=disease_ids,
ngram_ids=all_ngram_ids,
ngram_positions=all_ngram_positions_matrix,
# ngram_lengths=all_ngram_lengths,
# ngram_tuples=all_ngram_tuples,
# ngram_seg_ids=all_ngram_seg_ids,
# ngram_masks=all_ngram_mask_array
))
return features
def feature2input(self, device, feature):
all_input_ids = torch.tensor([f.input_ids for f in feature], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in feature], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in feature], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in feature], dtype=torch.long)
all_valid_ids = torch.tensor([f.valid_ids for f in feature], dtype=torch.long)
all_lmask_ids = torch.tensor([f.label_mask for f in feature], dtype=torch.long)
input_ids = all_input_ids.to(device)
input_mask = all_input_mask.to(device)
segment_ids = all_segment_ids.to(device)
label_ids = all_label_ids.to(device)
valid_ids = all_valid_ids.to(device)
l_mask = all_lmask_ids.to(device)
all_lmask = torch.tensor([f.label_mask for f in feature], dtype=torch.float)
lmask = all_lmask.to(device)
if self.memory is not None:
all_party_mask = torch.tensor([f.party_mask for f in feature], dtype=torch.float)
party_mask = all_party_mask.to(device)
else:
party_mask = None
if self.use_party:
all_party_ids = torch.tensor([f.party for f in feature], dtype=torch.long)
party_ids = all_party_ids.to(device)
else:
party_ids = None
if self.use_department:
all_department_ids = torch.tensor([f.department for f in feature], dtype=torch.long)
department_ids = all_department_ids.to(device)
else:
department_ids = None
if self.use_disease:
all_disease_ids = torch.tensor([f.disease for f in feature], dtype=torch.long)
disease_ids = all_disease_ids.to(device)
else:
disease_ids = None
if self.zen is not None:
all_ngram_ids = torch.tensor([f.ngram_ids for f in feature], dtype=torch.long)
all_ngram_positions = torch.tensor([f.ngram_positions for f in feature], dtype=torch.long)
# all_ngram_lengths = torch.tensor([f.ngram_lengths for f in train_features], dtype=torch.long)
# all_ngram_seg_ids = torch.tensor([f.ngram_seg_ids for f in train_features], dtype=torch.long)
# all_ngram_masks = torch.tensor([f.ngram_masks for f in train_features], dtype=torch.long)
ngram_ids = all_ngram_ids.to(device)
ngram_positions = all_ngram_positions.to(device)
else:
ngram_ids = None
ngram_positions = None
return input_ids, input_mask, l_mask, label_ids, ngram_ids, ngram_positions, segment_ids, valid_ids, \
lmask, party_mask, party_ids, department_ids, disease_ids
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None, party=None, summary=None, max_utterance_len=None,
party_mask=None, department=None, disease=None):
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
self.party = party
self.summary = summary
self.max_utterance_len = max_utterance_len
self.party_mask = party_mask
self.department = department
self.disease = disease
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id, valid_ids=None, label_mask=None,
input_id_len=None, party_mask=None, party=None, department=None, disease=None,
ngram_ids=None, ngram_positions=None, ngram_lengths=None,
ngram_tuples=None, ngram_seg_ids=None, ngram_masks=None):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.valid_ids = valid_ids
self.label_mask = label_mask
self.input_id_len = input_id_len
self.party_mask = party_mask
self.party = party
self.department = department
self.disease = disease
self.ngram_ids = ngram_ids
self.ngram_positions = ngram_positions
self.ngram_lengths = ngram_lengths
self.ngram_tuples = ngram_tuples
self.ngram_seg_ids = ngram_seg_ids
self.ngram_masks = ngram_masks
def readsentence(filename):
data = []
with open(filename, 'r', encoding='utf8') as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line == '':
continue
label_list = ['S' for _ in range(len(line))]
data.append((line, label_list))
return data