Skip to content

Latest commit

 

History

History
84 lines (82 loc) · 115 KB

Image-Stitching.md

File metadata and controls

84 lines (82 loc) · 115 KB

Image Stitching

Title Date Abstract Comment CodeRepository
Enhanced Feature-based Image Stitching for Endoscopic Videos in Pediatric Eosinophilic Esophagitis 2025-02-13
Show

Video endoscopy represents a major advance in the investigation of gastrointestinal diseases. Reviewing endoscopy videos often involves frequent adjustments and reorientations to piece together a complete view, which can be both time-consuming and prone to errors. Image stitching techniques address this issue by providing a continuous and complete visualization of the examined area. However, endoscopic images, particularly those of the esophagus, present unique challenges. The smooth surface, lack of distinct feature points, and non-horizontal orientation complicate the stitching process, rendering traditional feature-based methods often ineffective for these types of images. In this paper, we propose a novel preprocessing pipeline designed to enhance endoscopic image stitching through advanced computational techniques. Our approach converts endoscopic video data into continuous 2D images by following four key steps: (1) keyframe selection, (2) image rotation adjustment to correct distortions, (3) surface unwrapping using polar coordinate transformation to generate a flat image, and (4) feature point matching enhanced by Adaptive Histogram Equalization for improved feature detection. We evaluate stitching quality through the assessment of valid feature point match pairs. Experiments conducted on 20 pediatric endoscopy videos demonstrate that our method significantly improves image alignment and stitching quality compared to traditional techniques, laying a robust foundation for more effective panoramic image creation.

None
Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models 2025-02-11
Show

Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.

Accep...

Accepted at NAACL 2025 Main

Code Link
Leveraging Local Patch Alignment to Seam-cutting for Large Parallax Image Stitching 2025-01-19
Show

Seam cutting methods have been proven effective in the composition step of image stitching, especially for images with parallax. However, current seam cutting can be seen as the subsequent step after the image alignment is settled. Its effectiveness usually depends on the fact that images can be roughly aligned such that a local region exists where an unnoticeable seam can be found. Current alignment methods often fall short of expectations for images with large parallax, and most efforts are devoted to improving the alignment accuracy. In this paper, we argue that by adding a simple Local Patch Alignment Module (LPAM) into the seam cutting, the final result can be efficiently improved for large parallax image stitching. Concretely, we first evaluate the quality of pixels along the estimated seam of the seam cutting method. Then, for pixels with low qualities, we separate their enclosing patches in the aligned images and locally align them by constructing modified dense correspondences via SIFT flow. Finally, we composite the aligned patches via seam cutting and merge them into the original aligned result to generate the final mosaic. Experiments show that introducing LPAM can effectively and efficiently improve the stitching results.

In peer review None
OmniSplat: Taming Feed-Forward 3D Gaussian Splatting for Omnidirectional Images with Editable Capabilities 2024-12-21
Show

Feed-forward 3D Gaussian Splatting (3DGS) models have gained significant popularity due to their ability to generate scenes immediately without needing per-scene optimization. Although omnidirectional images are getting more popular since they reduce the computation for image stitching to composite a holistic scene, existing feed-forward models are only designed for perspective images. The unique optical properties of omnidirectional images make it difficult for feature encoders to correctly understand the context of the image and make the Gaussian non-uniform in space, which hinders the image quality synthesized from novel views. We propose OmniSplat, a pioneering work for fast feed-forward 3DGS generation from a few omnidirectional images. We introduce Yin-Yang grid and decompose images based on it to reduce the domain gap between omnidirectional and perspective images. The Yin-Yang grid can use the existing CNN structure as it is, but its quasi-uniform characteristic allows the decomposed image to be similar to a perspective image, so it can exploit the strong prior knowledge of the learned feed-forward network. OmniSplat demonstrates higher reconstruction accuracy than existing feed-forward networks trained on perspective images. Furthermore, we enhance the segmentation consistency between omnidirectional images by leveraging attention from the encoder of OmniSplat, providing fast and clean 3DGS editing results.

None
Object-level Geometric Structure Preserving for Natural Image Stitching 2024-12-10
Show

The topic of stitching images with globally natural structures holds paramount significance, with two main goals: pixel-level alignment and distortion prevention. The existing approaches exhibit the ability to align well, yet fall short in maintaining object structures. In this paper, we endeavour to safeguard the overall OBJect-level structures within images based on Global Similarity Prior (OBJ-GSP), on the basis of good alignment performance. Our approach leverages semantic segmentation models like the family of Segment Anything Model to extract the contours of any objects in a scene. Triangular meshes are employed in image transformation to protect the overall shapes of objects within images. The balance between alignment and distortion prevention is achieved by allowing the object meshes to strike a balance between similarity and projective transformation. We also demonstrate that object-level semantic information is necessary in low-altitude aerial image stitching. Additionally, we propose StitchBench, the largest image stitching benchmark with most diverse scenarios. Extensive experimental results demonstrate that OBJ-GSP outperforms existing methods in both pixel alignment and shape preservation. Code and dataset is publicly available at \url{https://github.com/RussRobin/OBJ-GSP}.

Code Link
Unsupervised Homography Estimation on Multimodal Image Pair via Alternating Optimization 2024-11-20
Show

Estimating the homography between two images is crucial for mid- or high-level vision tasks, such as image stitching and fusion. However, using supervised learning methods is often challenging or costly due to the difficulty of collecting ground-truth data. In response, unsupervised learning approaches have emerged. Most early methods, though, assume that the given image pairs are from the same camera or have minor lighting differences. Consequently, while these methods perform effectively under such conditions, they generally fail when input image pairs come from different domains, referred to as multimodal image pairs. To address these limitations, we propose AltO, an unsupervised learning framework for estimating homography in multimodal image pairs. Our method employs a two-phase alternating optimization framework, similar to Expectation-Maximization (EM), where one phase reduces the geometry gap and the other addresses the modality gap. To handle these gaps, we use Barlow Twins loss for the modality gap and propose an extended version, Geometry Barlow Twins, for the geometry gap. As a result, we demonstrate that our method, AltO, can be trained on multimodal datasets without any ground-truth data. It not only outperforms other unsupervised methods but is also compatible with various architectures of homography estimators. The source code can be found at:~\url{https://github.com/songsang7/AltO}

This ...

This paper is accepted to the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024)

Code Link
Modification Takes Courage: Seamless Image Stitching via Reference-Driven Inpainting 2024-11-15
Show

Current image stitching methods often produce noticeable seams in challenging scenarios such as uneven hue and large parallax. To tackle this problem, we propose the Reference-Driven Inpainting Stitcher (RDIStitcher), which reformulates the image fusion and rectangling as a reference-based inpainting model, incorporating a larger modification fusion area and stronger modification intensity than previous methods. Furthermore, we introduce a self-supervised model training method, which enables the implementation of RDIStitcher without requiring labeled data by fine-tuning a Text-to-Image (T2I) diffusion model. Recognizing difficulties in assessing the quality of stitched images, we present the Multimodal Large Language Models (MLLMs)-based metrics, offering a new perspective on evaluating stitched image quality. Compared to the state-of-the-art (SOTA) method, extensive experiments demonstrate that our method significantly enhances content coherence and seamless transitions in the stitched images. Especially in the zero-shot experiments, our method exhibits strong generalization capabilities. Code: https://github.com/yayoyo66/RDIStitcher

17 pages, 10 figures Code Link
SynStitch: a Self-Supervised Learning Network for Ultrasound Image Stitching Using Synthetic Training Pairs and Indirect Supervision 2024-11-11
Show

Ultrasound (US) image stitching can expand the field-of-view (FOV) by combining multiple US images from varied probe positions. However, registering US images with only partially overlapping anatomical contents is a challenging task. In this work, we introduce SynStitch, a self-supervised framework designed for 2DUS stitching. SynStitch consists of a synthetic stitching pair generation module (SSPGM) and an image stitching module (ISM). SSPGM utilizes a patch-conditioned ControlNet to generate realistic 2DUS stitching pairs with known affine matrix from a single input image. ISM then utilizes this synthetic paired data to learn 2DUS stitching in a supervised manner. Our framework was evaluated against multiple leading methods on a kidney ultrasound dataset, demonstrating superior 2DUS stitching performance through both qualitative and quantitative analyses. The code will be made public upon acceptance of the paper.

None
VidPanos: Generative Panoramic Videos from Casual Panning Videos 2024-10-27
Show

Panoramic image stitching provides a unified, wide-angle view of a scene that extends beyond the camera's field of view. Stitching frames of a panning video into a panoramic photograph is a well-understood problem for stationary scenes, but when objects are moving, a still panorama cannot capture the scene. We present a method for synthesizing a panoramic video from a casually-captured panning video, as if the original video were captured with a wide-angle camera. We pose panorama synthesis as a space-time outpainting problem, where we aim to create a full panoramic video of the same length as the input video. Consistent completion of the space-time volume requires a powerful, realistic prior over video content and motion, for which we adapt generative video models. Existing generative models do not, however, immediately extend to panorama completion, as we show. We instead apply video generation as a component of our panorama synthesis system, and demonstrate how to exploit the strengths of the models while minimizing their limitations. Our system can create video panoramas for a range of in-the-wild scenes including people, vehicles, and flowing water, as well as stationary background features.

Proje...

Project page at https://vidpanos.github.io/. To appear at SIGGRAPH Asia 2024 (conference track)

Code Link
Neural Light Spheres for Implicit Image Stitching and View Synthesis 2024-10-03
Show

Challenging to capture, and challenging to display on a cellphone screen, the panorama paradoxically remains both a staple and underused feature of modern mobile camera applications. In this work we address both of these challenges with a spherical neural light field model for implicit panoramic image stitching and re-rendering; able to accommodate for depth parallax, view-dependent lighting, and local scene motion and color changes during capture. Fit during test-time to an arbitrary path panoramic video capture -- vertical, horizontal, random-walk -- these neural light spheres jointly estimate the camera path and a high-resolution scene reconstruction to produce novel wide field-of-view projections of the environment. Our single-layer model avoids expensive volumetric sampling, and decomposes the scene into compact view-dependent ray offset and color components, with a total model size of 80 MB per scene, and real-time (50 FPS) rendering at 1080p resolution. We demonstrate improved reconstruction quality over traditional image stitching and radiance field methods, with significantly higher tolerance to scene motion and non-ideal capture settings.

Proje...

Project site: https://light.princeton.edu/publication/neuls/

None
Automatic Image Unfolding and Stitching Framework for Esophageal Lining Video Based on Density-Weighted Feature Matching 2024-10-02
Show

Endoscopy is a crucial tool for diagnosing the gastrointestinal tract, but its effectiveness is often limited by a narrow field of view and the dynamic nature of the internal environment, especially in the esophagus, where complex and repetitive patterns make image stitching challenging. This paper introduces a novel automatic image unfolding and stitching framework tailored for esophageal videos captured during endoscopy. The method combines feature matching algorithms, including LoFTR, SIFT, and ORB, to create a feature filtering pool and employs a Density-Weighted Homography Optimization (DWHO) algorithm to enhance stitching accuracy. By merging consecutive frames, the framework generates a detailed panoramic view of the esophagus, enabling thorough and accurate visual analysis. Experimental results show the framework achieves low Root Mean Square Error (RMSE) and high Structural Similarity Index (SSIM) across extensive video sequences, demonstrating its potential for clinical use and improving the quality and continuity of endoscopic visual data.

None
SX-Stitch: An Efficient VMS-UNet Based Framework for Intraoperative Scoliosis X-Ray Image Stitching 2024-09-09
Show

In scoliosis surgery, the limited field of view of the C-arm X-ray machine restricts the surgeons' holistic analysis of spinal structures .This paper presents an end-to-end efficient and robust intraoperative X-ray image stitching method for scoliosis surgery,named SX-Stitch. The method is divided into two stages:segmentation and stitching. In the segmentation stage, We propose a medical image segmentation model named Vision Mamba of Spine-UNet (VMS-UNet), which utilizes the state space Mamba to capture long-distance contextual information while maintaining linear computational complexity, and incorporates the SimAM attention mechanism, significantly improving the segmentation performance.In the stitching stage, we simplify the alignment process between images to the minimization of a registration energy function. The total energy function is then optimized to order unordered images, and a hybrid energy function is introduced to optimize the best seam, effectively eliminating parallax artifacts. On the clinical dataset, Sx-Stitch demonstrates superiority over SOTA schemes both qualitatively and quantitatively.

None
Local-peak scale-invariant feature transform for fast and random image stitching 2024-07-30
Show

Image stitching aims to construct a wide field of view with high spatial resolution, which cannot be achieved in a single exposure. Typically, conventional image stitching techniques, other than deep learning, require complex computation and thus computational pricy, especially for stitching large raw images. In this study, inspired by the multiscale feature of fluid turbulence, we developed a fast feature point detection algorithm named local-peak scale-invariant feature transform (LP-SIFT), based on the multiscale local peaks and scale-invariant feature transform method. By combining LP-SIFT and RANSAC in image stitching, the stitching speed can be improved by orders, compared with the original SIFT method. Nine large images (over 2600*1600 pixels), arranged randomly without prior knowledge, can be stitched within 158.94 s. The algorithm is highly practical for applications requiring a wide field of view in diverse application scenes, e.g., terrain mapping, biological analysis, and even criminal investigation.

None
Eliminating Warping Shakes for Unsupervised Online Video Stitching 2024-07-10
Show

In this paper, we retarget video stitching to an emerging issue, named warping shake, when extending image stitching to video stitching. It unveils the temporal instability of warped content in non-overlapping regions, despite image stitching having endeavored to preserve the natural structures. Therefore, in most cases, even if the input videos to be stitched are stable, the stitched video will inevitably cause undesired warping shakes and affect the visual experience. To eliminate the shakes, we propose StabStitch to simultaneously realize video stitching and video stabilization in a unified unsupervised learning framework. Starting from the camera paths in video stabilization, we first derive the expression of stitching trajectories in video stitching by elaborately integrating spatial and temporal warps. Then a warp smoothing model is presented to optimize them with a comprehensive consideration regarding content alignment, trajectory smoothness, spatial consistency, and online collaboration. To establish an evaluation benchmark and train the learning framework, we build a video stitching dataset with a rich diversity in camera motions and scenes. Compared with existing stitching solutions, StabStitch exhibits significant superiority in scene robustness and inference speed in addition to stitching and stabilization performance, contributing to a robust and real-time online video stitching system. The code and dataset are available at https://github.com/nie-lang/StabStitch.

Aceepted to ECCV2024 Code Link
Parallax-tolerant Image Stitching via Segmentation-guided Multi-homography Warping 2024-06-28
Show

Large parallax between images is an intractable issue in image stitching. Various warping-based methods are proposed to address it, yet the results are unsatisfactory. In this paper, we propose a novel image stitching method using multi-homography warping guided by image segmentation. Specifically, we leverage the Segment Anything Model to segment the target image into numerous contents and partition the feature points into multiple subsets via the energy-based multi-homography fitting algorithm. The multiple subsets of feature points are used to calculate the corresponding multiple homographies. For each segmented content in the overlapping region, we select its best-fitting homography with the lowest photometric error. For each segmented content in the non-overlapping region, we calculate a weighted combination of the linearized homographies. Finally, the target image is warped via the best-fitting homographies to align with the reference image, and the final panorama is generated via linear blending. Comprehensive experimental results on the public datasets demonstrate that our method provides the best alignment accuracy by a large margin, compared with the state-of-the-art methods. The source code is available at https://github.com/tlliao/multi-homo-warp.

11 pages, 9 figures Code Link
Single-image camera calibration with model-free distortion correction 2024-06-24
Show

Camera calibration is a process of paramount importance in computer vision applications that require accurate quantitative measurements. The popular method developed by Zhang relies on the use of a large number of images of a planar grid of fiducial points captured in multiple poses. Although flexible and easy to implement, Zhang's method has some limitations. The simultaneous optimization of the entire parameter set, including the coefficients of a predefined distortion model, may result in poor distortion correction at the image boundaries or in miscalculation of the intrinsic parameters, even with a reasonably small reprojection error. Indeed, applications involving image stitching (e.g. multi-camera systems) require accurate mapping of distortion up to the outermost regions of the image. Moreover, intrinsic parameters affect the accuracy of camera pose estimation, which is fundamental for applications such as vision servoing in robot navigation and automated assembly. This paper proposes a method for estimating the complete set of calibration parameters from a single image of a planar speckle pattern covering the entire sensor. The correspondence between image points and physical points on the calibration target is obtained using Digital Image Correlation. The effective focal length and the extrinsic parameters are calculated separately after a prior evaluation of the principal point. At the end of the procedure, a dense and uniform model-free distortion map is obtained over the entire image. Synthetic data with different noise levels were used to test the feasibility of the proposed method and to compare its metrological performance with Zhang's method. Real-world tests demonstrate the potential of the developed method to reveal aspects of the image formation that are hidden by averaging over multiple images.

Accepted manuscript None
Reconstructing the Image Stitching Pipeline: Integrating Fusion and Rectangling into a Unified Inpainting Model 2024-05-26
Show

Deep learning-based image stitching pipelines are typically divided into three cascading stages: registration, fusion, and rectangling. Each stage requires its own network training and is tightly coupled to the others, leading to error propagation and posing significant challenges to parameter tuning and system stability. This paper proposes the Simple and Robust Stitcher (SRStitcher), which revolutionizes the image stitching pipeline by simplifying the fusion and rectangling stages into a unified inpainting model, requiring no model training or fine-tuning. We reformulate the problem definitions of the fusion and rectangling stages and demonstrate that they can be effectively integrated into an inpainting task. Furthermore, we design the weighted masks to guide the reverse process in a pre-trained largescale diffusion model, implementing this integrated inpainting task in a single inference. Through extensive experimentation, we verify the interpretability and generalization capabilities of this unified model, demonstrating that SRStitcher outperforms state-of-the-art methods in both performance and stability. Code: https://github.com/yayoyo66/SRStitcher

Code Link
Parallax-Tolerant Image Stitching with Epipolar Displacement Field 2024-05-13
Show

Image stitching with parallax is still a challenging task. Existing methods often struggle to maintain both the local and global structures of the image while reducing alignment artifacts and warping distortions. In this paper, we propose a novel approach that utilizes epipolar geometry to establish a warping technique based on the epipolar displacement field. Initially, the warping rule for pixels in the epipolar geometry is established through the infinite homography. Subsequently, the epipolar displacement field, which represents the sliding distance of the warped pixel along the epipolar line, is formulated by thin-plate splines based on the principle of local elastic deformation. The stitching result can be generated by inversely warping the pixels according to the epipolar displacement field. This method incorporates the epipolar constraints in the warping rule, which ensures high-quality alignment and maintains the projectivity of the panorama. Qualitative and quantitative comparative experiments demonstrate the competitiveness of the proposed method for stitching images with large parallax.

None
RecDiffusion: Rectangling for Image Stitching with Diffusion Models 2024-03-28
Show

Image stitching from different captures often results in non-rectangular boundaries, which is often considered unappealing. To solve non-rectangular boundaries, current solutions involve cropping, which discards image content, inpainting, which can introduce unrelated content, or warping, which can distort non-linear features and introduce artifacts. To overcome these issues, we introduce a novel diffusion-based learning framework, \textbf{RecDiffusion}, for image stitching rectangling. This framework combines Motion Diffusion Models (MDM) to generate motion fields, effectively transitioning from the stitched image's irregular borders to a geometrically corrected intermediary. Followed by Content Diffusion Models (CDM) for image detail refinement. Notably, our sampling process utilizes a weighted map to identify regions needing correction during each iteration of CDM. Our RecDiffusion ensures geometric accuracy and overall visual appeal, surpassing all previous methods in both quantitative and qualitative measures when evaluated on public benchmarks. Code is released at https://github.com/lhaippp/RecDiffusion.

Code Link
Towards Robust Image Stitching: An Adaptive Resistance Learning against Compatible Attacks 2024-02-25
Show

Image stitching seamlessly integrates images captured from varying perspectives into a single wide field-of-view image. Such integration not only broadens the captured scene but also augments holistic perception in computer vision applications. Given a pair of captured images, subtle perturbations and distortions which go unnoticed by the human visual system tend to attack the correspondence matching, impairing the performance of image stitching algorithms. In light of this challenge, this paper presents the first attempt to improve the robustness of image stitching against adversarial attacks. Specifically, we introduce a stitching-oriented attack~(SoA), tailored to amplify the alignment loss within overlapping regions, thereby targeting the feature matching procedure. To establish an attack resistant model, we delve into the robustness of stitching architecture and develop an adaptive adversarial training~(AAT) to balance attack resistance with stitching precision. In this way, we relieve the gap between the routine adversarial training and benign models, ensuring resilience without quality compromise. Comprehensive evaluation across real-world and synthetic datasets validate the deterioration of SoA on stitching performance. Furthermore, AAT emerges as a more robust solution against adversarial perturbations, delivering superior stitching results. Code is available at:https://github.com/Jzy2017/TRIS.

Accepted by AAAI2024 Code Link
Implicit Neural Image Stitching 2024-01-22
Show

Existing frameworks for image stitching often provide visually reasonable stitchings. However, they suffer from blurry artifacts and disparities in illumination, depth level, etc. Although the recent learning-based stitchings relax such disparities, the required methods impose sacrifice of image qualities failing to capture high-frequency details for stitched images. To address the problem, we propose a novel approach, implicit Neural Image Stitching (NIS) that extends arbitrary-scale super-resolution. Our method estimates Fourier coefficients of images for quality-enhancing warps. Then, the suggested model blends color mismatches and misalignment in the latent space and decodes the features into RGB values of stitched images. Our experiments show that our approach achieves improvement in resolving the low-definition imaging of the previous deep image stitching with favorable accelerated image-enhancing methods. Our source code is available at https://github.com/minshu-kim/NIS.

Code Link
Robust Multi-Modal Image Stitching for Improved Scene Understanding 2023-12-28
Show

Multi-modal image stitching can be a difficult feat. That's why, in this paper, we've devised a unique and comprehensive image-stitching pipeline that taps into OpenCV's stitching module. Our approach integrates feature-based matching, transformation estimation, and blending techniques to bring about panoramic views that are of top-tier quality - irrespective of lighting, scale or orientation differences between images. We've put our pipeline to the test with a varied dataset and found that it's very effective in enhancing scene understanding and finding real-world applications.

8 pages, 11 figures None
Learning Residual Elastic Warps for Image Stitching under Dirichlet Boundary Condition 2023-10-18
Show

Trendy suggestions for learning-based elastic warps enable the deep image stitchings to align images exposed to large parallax errors. Despite the remarkable alignments, the methods struggle with occasional holes or discontinuity between overlapping and non-overlapping regions of a target image as the applied training strategy mostly focuses on overlap region alignment. As a result, they require additional modules such as seam finder and image inpainting for hiding discontinuity and filling holes, respectively. In this work, we suggest Recurrent Elastic Warps (REwarp) that address the problem with Dirichlet boundary condition and boost performances by residual learning for recurrent misalign correction. Specifically, REwarp predicts a homography and a Thin-plate Spline (TPS) under the boundary constraint for discontinuity and hole-free image stitching. Our experiments show the favorable aligns and the competitive computational costs of REwarp compared to the existing stitching methods. Our source code is available at https://github.com/minshu-kim/REwarp.

Code Link
$H$-RANSAC, an algorithmic variant for Homography image transform from featureless point sets: application to video-based football analytics 2023-10-07
Show

Estimating homography matrix between two images has various applications like image stitching or image mosaicing and spatial information retrieval from multiple camera views, but has been proved to be a complicated problem, especially in cases of radically different camera poses and zoom factors. Many relevant approaches have been proposed, utilizing direct feature based, or deep learning methodologies. In this paper, we propose a generalized RANSAC algorithm, H-RANSAC, to retrieve homography image transformations from sets of points without descriptive local feature vectors and point pairing. We allow the points to be optionally labelled in two classes. We propose a robust criterion that rejects implausible point selection before each iteration of RANSAC, based on the type of the quadrilaterals formed by random point pair selection (convex or concave and (non)-self-intersecting). A similar post-hoc criterion rejects implausible homography transformations is included at the end of each iteration. The expected maximum iterations of $H$-RANSAC are derived for different probabilities of success, according to the number of points per image and per class, and the percentage of outliers. The proposed methodology is tested on a large dataset of images acquired by 12 cameras during real football matches, where radically different views at each timestamp are to be matched. Comparisons with state-of-the-art implementations of RANSAC combined with classic and deep learning image salient point detection indicates the superiority of the proposed $H$-RANSAC, in terms of average reprojection error and number of successfully processed pairs of frames, rendering it the method of choice in cases of image homography alignment with few tens of points, while local features are not available, or not descriptive enough. The implementation of $H$-RANSAC is available in https://github.com/gnousias/H-RANSAC

Code Link
GPU Accelerated Color Correction and Frame Warping for Real-time Video Stitching 2023-08-17
Show

Traditional image stitching focuses on a single panorama frame without considering the spatial-temporal consistency in videos. The straightforward image stitching approach will cause temporal flicking and color inconstancy when it is applied to the video stitching task. Besides, inaccurate camera parameters will cause artifacts in the image warping. In this paper, we propose a real-time system to stitch multiple video sequences into a panoramic video, which is based on GPU accelerated color correction and frame warping without accurate camera parameters. We extend the traditional 2D-Matrix (2D-M) color correction approach and a present spatio-temporal 3D-Matrix (3D-M) color correction method for the overlap local regions with online color balancing using a piecewise function on global frames. Furthermore, we use pairwise homography matrices given by coarse camera calibration for global warping followed by accurate local warping based on the optical flow. Experimental results show that our system can generate highquality panorama videos in real time.

None
Multi-Spectral Image Stitching via Spatial Graph Reasoning 2023-07-31
Show

Multi-spectral image stitching leverages the complementarity between infrared and visible images to generate a robust and reliable wide field-of-view (FOV) scene. The primary challenge of this task is to explore the relations between multi-spectral images for aligning and integrating multi-view scenes. Capitalizing on the strengths of Graph Convolutional Networks (GCNs) in modeling feature relationships, we propose a spatial graph reasoning based multi-spectral image stitching method that effectively distills the deformation and integration of multi-spectral images across different viewpoints. To accomplish this, we embed multi-scale complementary features from the same view position into a set of nodes. The correspondence across different views is learned through powerful dense feature embeddings, where both inter- and intra-correlations are developed to exploit cross-view matching and enhance inner feature disparity. By introducing long-range coherence along spatial and channel dimensions, the complementarity of pixel relations and channel interdependencies aids in the reconstruction of aligned multi-view features, generating informative and reliable wide FOV scenes. Moreover, we release a challenging dataset named ChaMS, comprising both real-world and synthetic sets with significant parallax, providing a new option for comprehensive evaluation. Extensive experiments demonstrate that our method surpasses the state-of-the-arts.

9 pages, 5 figures None
Parallax-Tolerant Unsupervised Deep Image Stitching 2023-07-22
Show

Traditional image stitching approaches tend to leverage increasingly complex geometric features (point, line, edge, etc.) for better performance. However, these hand-crafted features are only suitable for specific natural scenes with adequate geometric structures. In contrast, deep stitching schemes overcome the adverse conditions by adaptively learning robust semantic features, but they cannot handle large-parallax cases due to homography-based registration. To solve these issues, we propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique. First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion. It provides accurate alignment for overlapping regions and shape preservation for non-overlapping regions by joint optimization concerning alignment and distortion. Subsequently, to improve the generalization capability, we design a simple but effective iterative strategy to enhance the warp adaption in cross-dataset and cross-resolution applications. Finally, to further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks. Compared with existing methods, our solution is parallax-tolerant and free from laborious designs of complicated geometric features for specific scenes. Extensive experiments show our superiority over the SoTA methods, both quantitatively and qualitatively. The code is available at https://github.com/nie-lang/UDIS2.

Accepted to ICCV2023 Code Link
Deep Seam Prediction for Image Stitching Based on Selection Consistency Loss 2023-06-26
Show

Image stitching is to construct panoramic images with wider field of vision (FOV) from some images captured from different viewing positions. To solve the problem of fusion ghosting in the stitched image, seam-driven methods avoid the misalignment area to fuse images by predicting the best seam. Currently, as standard tools of the OpenCV library, dynamic programming (DP) and GraphCut (GC) are still the only commonly used seam prediction methods despite the fact that they were both proposed two decades ago. However, GC can get excellent seam quality but poor real-time performance while DP method has good efficiency but poor seam quality. In this paper, we propose a deep learning based seam prediction method (DSeam) for the sake of high seam quality with high efficiency. To overcome the difficulty of the seam description in network and no GroundTruth for training we design a selective consistency loss combining the seam shape constraint and seam quality constraint to supervise the network learning. By the constraint of the selection of consistency loss, we implicitly defined the mask boundaries as seams and transform seam prediction into mask prediction. To our knowledge, the proposed DSeam is the first deep learning based seam prediction method for image stitching. Extensive experimental results well demonstrate the superior performance of our proposed Dseam method which is 15 times faster than the classic GC seam prediction method in OpenCV 2.4.9 with similar seam quality.

None
Pentagon-Match (PMatch): Identification of View-Invariant Planar Feature for Local Feature Matching-Based Homography Estimation 2023-05-27
Show

In computer vision, finding correct point correspondence among images plays an important role in many applications, such as image stitching, image retrieval, visual localization, etc. Most of the research works focus on the matching of local feature before a sampling method is employed, such as RANSAC, to verify initial matching results via repeated fitting of certain global transformation among the images. However, incorrect matches may still exist. Thus, a novel sampling scheme, Pentagon-Match (PMatch), is proposed in this work to verify the correctness of initially matched keypoints using pentagons randomly sampled from them. By ensuring shape and location of these pentagons are view-invariant with various evaluations of cross-ratio (CR), incorrect matches of keypoint can be identified easily with homography estimated from correctly matched pentagons. Experimental results show that highly accurate estimation of homography can be obtained efficiently for planar scenes of the HPatches dataset, based on keypoint matching results provided by LoFTR. Besides, accurate outlier identification for the above matching results and possible extension of the approach for multi-plane situation are also demonstrated.

arXiv...

arXiv admin note: text overlap with arXiv:2211.03007

None
Natural Image Stitching Using Depth Maps 2023-02-22
Show

Natural image stitching (NIS) aims to create one natural-looking mosaic from two overlapping images that capture the same 3D scene from different viewing positions. Challenges inevitably arise when the scene is non-planar and the camera baseline is wide, since parallax becomes not negligible in such cases. In this paper, we propose a novel NIS method using depth maps, which generates natural-looking mosaics against parallax in both overlapping and non-overlapping regions. Firstly, we construct a robust fitting method to filter out the outliers in feature matches and estimate the epipolar geometry between input images. Then, we draw a triangulation of the target image and estimate multiple local homographies, one per triangle, based on the locations of their vertices, the rectified depth values and the epipolar geometry. Finally, the warping image is rendered by the backward mapping of piece-wise homographies. Panorama is then produced via average blending and image inpainting. Experimental results demonstrate that the proposed method not only provides accurate alignment in the overlapping regions but also virtual naturalness in the non-overlapping region.

10 pa...

10 pages, 8 figures, under review

None
A Geometrically Constrained Point Matching based on View-invariant Cross-ratios, and Homography 2022-11-06
Show

In computer vision, finding point correspondence among images plays an important role in many applications, such as image stitching, image retrieval, visual localization, etc. Most of the research worksfocus on the matching of local feature before a sampling method is employed, such as RANSAC, to verify initial matching results via repeated fitting of certain global transformation among the images. However, incorrect matches may still exist, while careful examination of such problems is often skipped. Accordingly, a geometrically constrained algorithm is proposed in this work to verify the correctness of initially matched SIFT keypoints based on view-invariant cross-ratios (CRs). By randomly forming pentagons from these keypoints and matching their shape and location among images with CRs, robust planar region estimation can be achieved efficiently for the above verification, while correct and incorrect matches of keypoints can be examined easily with respect to those shape and location matched pentagons. Experimental results show that satisfactory results can be obtained for various scenes with single as well as multiple planar regions.

None
Deep Rectangling for Image Stitching: A Learning Baseline 2022-03-29
Show

Stitched images provide a wide field-of-view (FoV) but suffer from unpleasant irregular boundaries. To deal with this problem, existing image rectangling methods devote to searching an initial mesh and optimizing a target mesh to form the mesh deformation in two stages. Then rectangular images can be generated by warping stitched images. However, these solutions only work for images with rich linear structures, leading to noticeable distortions for portraits and landscapes with non-linear objects. In this paper, we address these issues by proposing the first deep learning solution to image rectangling. Concretely, we predefine a rigid target mesh and only estimate an initial mesh to form the mesh deformation, contributing to a compact one-stage solution. The initial mesh is predicted using a fully convolutional network with a residual progressive regression strategy. To obtain results with high content fidelity, a comprehensive objective function is proposed to simultaneously encourage the boundary rectangular, mesh shape-preserving, and content perceptually natural. Besides, we build the first image stitching rectangling dataset with a large diversity in irregular boundaries and scenes. Experiments demonstrate our superiority over traditional methods both quantitatively and qualitatively.

Accep...

Accepted by CVPR2022 (oral); Codes and dataset: https://github.com/nie-lang/DeepRectangling

Code Link
Human Face Recognition from Part of a Facial Image based on Image Stitching 2022-03-10
Show

Most of the current techniques for face recognition require the presence of a full face of the person to be recognized, and this situation is difficult to achieve in practice, the required person may appear with a part of his face, which requires prediction of the part that did not appear. Most of the current forecasting processes are done by what is known as image interpolation, which does not give reliable results, especially if the missing part is large. In this work, we adopted the process of stitching the face by completing the missing part with the flipping of the part shown in the picture, depending on the fact that the human face is characterized by symmetry in most cases. To create a complete model, two facial recognition methods were used to prove the efficiency of the algorithm. The selected face recognition algorithms that are applied here are Eigenfaces and geometrical methods. Image stitching is the process during which distinctive photographic images are combined to make a complete scene or a high-resolution image. Several images are integrated to form a wide-angle panoramic image. The quality of the image stitching is determined by calculating the similarity among the stitched image and original images and by the presence of the seam lines through the stitched images. The Eigenfaces approach utilizes PCA calculation to reduce the feature vector dimensions. It provides an effective approach for discovering the lower-dimensional space. In addition, to enable the proposed algorithm to recognize the face, it also ensures a fast and effective way of classifying faces. The phase of feature extraction is followed by the classifier phase.

None
Unified smoke and fire detection in an evolutionary framework with self-supervised progressive data augment 2022-02-16
Show

Few researches have studied simultaneous detection of smoke and flame accompanying fires due to their different physical natures that lead to uncertain fluid patterns. In this study, we collect a large image data set to re-label them as a multi-label image classification problem so as to identify smoke and flame simultaneously. In order to solve the generalization ability of the detection model on account of the movable fluid objects with uncertain shapes like fire and smoke, and their not compactible natures as well as the complex backgrounds with high variations, we propose a data augment method by random image stitch to deploy resizing, deforming, position variation, and background altering so as to enlarge the view of the learner. Moreover, we propose a self-learning data augment method by using the class activation map to extract the highly trustable region as new data source of positive examples to further enhance the data augment. By the mutual reinforcement between the data augment and the detection model that are performed iteratively, both modules make progress in an evolutionary manner. Experiments show that the proposed method can effectively improve the generalization performance of the model for concurrent smoke and fire detection.

None
Pixel-wise Deep Image Stitching 2021-12-12
Show

Image stitching aims at stitching the images taken from different viewpoints into an image with a wider field of view. Existing methods warp the target image to the reference image using the estimated warp function, and a homography is one of the most commonly used warping functions. However, when images have large parallax due to non-planar scenes and translational motion of a camera, the homography cannot fully describe the mapping between two images. Existing approaches based on global or local homography estimation are not free from this problem and suffer from undesired artifacts due to parallax. In this paper, instead of relying on the homography-based warp, we propose a novel deep image stitching framework exploiting the pixel-wise warp field to handle the large-parallax problem. The proposed deep image stitching framework consists of two modules: Pixel-wise Warping Module (PWM) and Stitched Image Generating Module (SIGMo). PWM employs an optical flow estimation model to obtain pixel-wise warp of the whole image, and relocates the pixels of the target image with the obtained warp field. SIGMo blends the warped target image and the reference image while eliminating unwanted artifacts such as misalignments, seams, and holes that harm the plausibility of the stitched result. For training and evaluating the proposed framework, we build a large-scale dataset that includes image pairs with corresponding pixel-wise ground truth warp and sample stitched result images. We show that the results of the proposed framework are qualitatively superior to those of the conventional methods, especially when the images have large parallax. The code and the proposed dataset will be publicly available soon.

None
Probabilistic Spatial Distribution Prior Based Attentional Keypoints Matching Network 2021-11-23
Show

Keypoints matching is a pivotal component for many image-relevant applications such as image stitching, visual simultaneous localization and mapping (SLAM), and so on. Both handcrafted-based and recently emerged deep learning-based keypoints matching methods merely rely on keypoints and local features, while losing sight of other available sensors such as inertial measurement unit (IMU) in the above applications. In this paper, we demonstrate that the motion estimation from IMU integration can be used to exploit the spatial distribution prior of keypoints between images. To this end, a probabilistic perspective of attention formulation is proposed to integrate the spatial distribution prior into the attentional graph neural network naturally. With the assistance of spatial distribution prior, the effort of the network for modeling the hidden features can be reduced. Furthermore, we present a projection loss for the proposed keypoints matching network, which gives a smooth edge between matching and un-matching keypoints. Image matching experiments on visual SLAM datasets indicate the effectiveness and efficiency of the presented method.

None
Depth-Aware Multi-Grid Deep Homography Estimation with Contextual Correlation 2021-11-03
Show

Homography estimation is an important task in computer vision applications, such as image stitching, video stabilization, and camera calibration. Traditional homography estimation methods heavily depend on the quantity and distribution of feature correspondences, leading to poor robustness in low-texture scenes. The learning solutions, on the contrary, try to learn robust deep features but demonstrate unsatisfying performance in the scenes with low overlap rates. In this paper, we address these two problems simultaneously by designing a contextual correlation layer (CCL). The CCL can efficiently capture the long-range correlation within feature maps and can be flexibly used in a learning framework. In addition, considering that a single homography can not represent the complex spatial transformation in depth-varying images with parallax, we propose to predict multi-grid homography from global to local. Moreover, we equip our network with a depth perception capability, by introducing a novel depth-aware shape-preserved loss. Extensive experiments demonstrate the superiority of our method over state-of-the-art solutions in the synthetic benchmark dataset and real-world dataset. The codes and models will be available at https://github.com/nie-lang/Multi-Grid-Deep-Homography.

Accep...

Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)

Code Link
A Robust Method for Image Stitching 2021-07-28
Show

We propose a novel method for large-scale image stitching that is robust against repetitive patterns and featureless regions in the imagery. In such cases, state-of-the-art image stitching methods easily produce image alignment artifacts, since they may produce false pairwise image registrations that are in conflict within the global connectivity graph. Our method augments the current methods by collecting all the plausible pairwise image registration candidates, among which globally consistent candidates are chosen. This enables the stitching process to determine the correct pairwise registrations by utilizing all the available information from the whole imagery, such as unambiguous registrations outside the repeating pattern and featureless regions. We formalize the method as a weighted multigraph whose nodes represent the individual image transformations from the composite image, and whose sets of multiple edges between two nodes represent all the plausible transformations between the pixel coordinates of the two images. The edge weights represent the plausibility of the transformations. The image transformations and the edge weights are solved from a non-linear minimization problem with linear constraints, for which a projection method is used. As an example, we apply the method in a large-scale scanning application where the transformations are primarily translations with only slight rotation and scaling component. Despite these simplifications, the state-of-the-art methods do not produce adequate results in such applications, since the image overlap is small, which can be featureless or repetitive, and misalignment artifacts and their concealment are unacceptable.

None
Unsupervised Deep Image Stitching: Reconstructing Stitched Features to Images 2021-06-24
Show

Traditional feature-based image stitching technologies rely heavily on feature detection quality, often failing to stitch images with few features or low resolution. The learning-based image stitching solutions are rarely studied due to the lack of labeled data, making the supervised methods unreliable. To address the above limitations, we propose an unsupervised deep image stitching framework consisting of two stages: unsupervised coarse image alignment and unsupervised image reconstruction. In the first stage, we design an ablation-based loss to constrain an unsupervised homography network, which is more suitable for large-baseline scenes. Moreover, a transformer layer is introduced to warp the input images in the stitching-domain space. In the second stage, motivated by the insight that the misalignments in pixel-level can be eliminated to a certain extent in feature-level, we design an unsupervised image reconstruction network to eliminate the artifacts from features to pixels. Specifically, the reconstruction network can be implemented by a low-resolution deformation branch and a high-resolution refined branch, learning the deformation rules of image stitching and enhancing the resolution simultaneously. To establish an evaluation benchmark and train the learning framework, a comprehensive real-world image dataset for unsupervised deep image stitching is presented and released. Extensive experiments well demonstrate the superiority of our method over other state-of-the-art solutions. Even compared with the supervised solutions, our image stitching quality is still preferred by users.

Accep...

Accepted by IEEE Transactions on Image Processing

None
Learning Edge-Preserved Image Stitching from Large-Baseline Deep Homography 2020-12-11
Show

Image stitching is a classical and crucial technique in computer vision, which aims to generate the image with a wide field of view. The traditional methods heavily depend on the feature detection and require that scene features be dense and evenly distributed in the image, leading to varying ghosting effects and poor robustness. Learning methods usually suffer from fixed view and input size limitations, showing a lack of generalization ability on other real datasets. In this paper, we propose an image stitching learning framework, which consists of a large-baseline deep homography module and an edge-preserved deformation module. First, we propose a large-baseline deep homography module to estimate the accurate projective transformation between the reference image and the target image in different scales of features. After that, an edge-preserved deformation module is designed to learn the deformation rules of image stitching from edge to content, eliminating the ghosting effects as much as possible. In particular, the proposed learning framework can stitch images of arbitrary views and input sizes, thus contribute to a supervised deep image stitching method with excellent generalization capability in other real images. Experimental results demonstrate that our homography module significantly outperforms the existing deep homography methods in the large baseline scenes. In image stitching, our method is superior to the existing learning method and shows competitive performance with state-of-the-art traditional methods.

12 pages, 12 figures None
Minimal Solutions for Panoramic Stitching Given Gravity Prior 2020-12-01
Show

When capturing panoramas, people tend to align their cameras with the vertical axis, i.e., the direction of gravity. Moreover, modern devices, such as smartphones and tablets, are equipped with an IMU (Inertial Measurement Unit) that can measure the gravity vector accurately. Using this prior, the y-axes of the cameras can be aligned or assumed to be already aligned, reducing their relative orientation to 1-DOF (degree of freedom). Exploiting this assumption, we propose new minimal solutions to panoramic image stitching of images taken by cameras with coinciding optical centers, i.e., undergoing pure rotation. We consider four practical camera configurations, assuming unknown fixed or varying focal length with or without radial distortion. The solvers are tested both on synthetic scenes and on more than 500k real image pairs from the Sun360 dataset and from scenes captured by us using two smartphones equipped with IMUs. It is shown, that they outperform the state-of-the-art both in terms of accuracy and processing time.

None
Object-centered image stitching 2020-11-23
Show

Image stitching is typically decomposed into three phases: registration, which aligns the source images with a common target image; seam finding, which determines for each target pixel the source image it should come from; and blending, which smooths transitions over the seams. As described in [1], the seam finding phase attempts to place seams between pixels where the transition between source images is not noticeable. Here, we observe that the most problematic failures of this approach occur when objects are cropped, omitted, or duplicated. We therefore take an object-centered approach to the problem, leveraging recent advances in object detection [2,3,4]. We penalize candidate solutions with this class of error by modifying the energy function used in the seam finding stage. This produces substantially more realistic stitching results on challenging imagery. In addition, these methods can be used to determine when there is non-recoverable occlusion in the input data, and also suggest a simple evaluation metric that can be used to evaluate the output of stitching algorithms.

ECCV 2018 None
Robust image stitching with multiple registrations 2020-11-23
Show

Panorama creation is one of the most widely deployed techniques in computer vision. In addition to industry applications such as Google Street View, it is also used by millions of consumers in smartphones and other cameras. Traditionally, the problem is decomposed into three phases: registration, which picks a single transformation of each source image to align it to the other inputs, seam finding, which selects a source image for each pixel in the final result, and blending, which fixes minor visual artifacts. Here, we observe that the use of a single registration often leads to errors, especially in scenes with significant depth variation or object motion. We propose instead the use of multiple registrations, permitting regions of the image at different depths to be captured with greater accuracy. MRF inference techniques naturally extend to seam finding over multiple registrations, and we show here that their energy functions can be readily modified with new terms that discourage duplication and tearing, common problems that are exacerbated by the use of multiple registrations. Our techniques are closely related to layer-based stereo, and move image stitching closer to explicit scene modeling. Experimental evidence demonstrates that our techniques often generate significantly better panoramas when there is substantial motion or parallax.

ECCV 2018 None
More Informed Random Sample Consensus 2020-11-18
Show

Random sample consensus (RANSAC) is a robust model-fitting algorithm. It is widely used in many fields including image-stitching and point cloud registration. In RANSAC, data is uniformly sampled for hypothesis generation. However, this uniform sampling strategy does not fully utilize all the information on many problems. In this paper, we propose a method that samples data with a L'{e}vy distribution together with a data sorting algorithm. In the hypothesis sampling step of the proposed method, data is sorted with a sorting algorithm we proposed, which sorts data based on the likelihood of a data point being in the inlier set. Then, hypotheses are sampled from the sorted data with L'{e}vy distribution. The proposed method is evaluated on both simulation and real-world public datasets. Our method shows better results compared with the uniform baseline method.

None
A Method of Generating Measurable Panoramic Image for Indoor Mobile Measurement System 2020-10-27
Show

This paper designs a technique route to generate high-quality panoramic image with depth information, which involves two critical research hotspots: fusion of LiDAR and image data and image stitching. For the fusion of 3D points and image data, since a sparse depth map can be firstly generated by projecting LiDAR point onto the RGB image plane based on our reliable calibrated and synchronized sensors, we adopt a parameter self-adaptive framework to produce 2D dense depth map. For image stitching, optimal seamline for the overlapping area is searched using a graph-cuts-based method to alleviate the geometric influence and image blending based on the pyramid multi-band is utilized to eliminate the photometric effects near the stitching line. Since each pixel is associated with a depth value, we design this depth value as a radius in the spherical projection which can further project the panoramic image to the world coordinate and consequently produces a high-quality measurable panoramic image. The purposed method is tested on the data from our data collection platform and presents a satisfactory application prospects.

None
Image Stitching and Rectification for Hand-Held Cameras 2020-08-20
Show

In this paper, we derive a new differential homography that can account for the scanline-varying camera poses in Rolling Shutter (RS) cameras, and demonstrate its application to carry out RS-aware image stitching and rectification at one stroke. Despite the high complexity of RS geometry, we focus in this paper on a special yet common input -- two consecutive frames from a video stream, wherein the inter-frame motion is restricted from being arbitrarily large. This allows us to adopt simpler differential motion model, leading to a straightforward and practical minimal solver. To deal with non-planar scene and camera parallax in stitching, we further propose an RS-aware spatially-varying homography field in the principle of As-Projective-As-Possible (APAP). We show superior performance over state-of-the-art methods both in RS image stitching and rectification, especially for images captured by hand-held shaking cameras.

ECCV ...

ECCV 2020. Project web: https://www.nec-labs.com/~mas/RS-APAP

None
IF-Net: An Illumination-invariant Feature Network 2020-08-10
Show

Feature descriptor matching is a critical step is many computer vision applications such as image stitching, image retrieval and visual localization. However, it is often affected by many practical factors which will degrade its performance. Among these factors, illumination variations are the most influential one, and especially no previous descriptor learning works focus on dealing with this problem. In this paper, we propose IF-Net, aimed to generate a robust and generic descriptor under crucial illumination changes conditions. We find out not only the kind of training data important but also the order it is presented. To this end, we investigate several dataset scheduling methods and propose a separation training scheme to improve the matching accuracy. Further, we propose a ROI loss and hard-positive mining strategy along with the training scheme, which can strengthen the ability of generated descriptor dealing with large illumination change conditions. We evaluate our approach on public patch matching benchmark and achieve the best results compared with several state-of-the-arts methods. To show the practicality, we further evaluate IF-Net on the task of visual localization under large illumination changes scenes, and achieves the best localization accuracy.

7 pages, 5 figures None
Image Stitching Based on Planar Region Consensus 2020-07-06
Show

Image stitching for two images without a global transformation between them is notoriously difficult. In this paper, noticing the importance of planar structure under perspective geometry, we propose a new image stitching method which stitches images by allowing for the alignment of a set of matched dominant planar regions. Clearly different from previous methods resorting to plane segmentation, the key to our approach is to utilize rich semantic information directly from RGB images to extract planar image regions with a deep Convolutional Neural Network (CNN). We specifically design a new module to make fully use of existing semantic segmentation networks to accommodate planar segmentation. To train the network, a dataset for planar region segmentation is contributed. With the planar region knowledge, a set of local transformations can be obtained by constraining matched regions, enabling more precise alignment in the overlapping area. We also use planar knowledge to estimate a transformation field over the whole image. The final mosaic is obtained by a mesh-based optimization framework which maintains high alignment accuracy and relaxes similarity transformation at the same time. Extensive experiments with quantitative comparisons show that our method can deal with different situations and outperforms the state-of-the-arts on challenging scenes.

15 pages, 9 figures None
Automated Stitching of Coral Reef Images and Extraction of Features for Damselfish Shoaling Behavior Analysis 2020-06-28
Show

Behavior analysis of animals involves the observation of intraspecific and interspecific interactions among various organisms in the environment. Collective behavior such as herding in farm animals, flocking of birds, and shoaling and schooling of fish provide information on its benefits on collective survival, fitness, reproductive patterns, group decision-making, and effects in animal epidemiology. In marine ethology, the investigation of behavioral patterns in schooling species can provide supplemental information in the planning and management of marine resources. Currently, damselfish species, although prevalent in tropical waters, have no adequate established base behavior information. This limits reef managers in efficiently planning for stress and disaster responses in protecting the reef. Visual marine data captured in the wild are scarce and prone to multiple scene variations, primarily caused by motion and changes in the natural environment. The gathered videos of damselfish by this research exhibit several scene distortions caused by erratic camera motions during acquisition. To effectively analyze shoaling behavior given the issues posed by capturing data in the wild, we propose a pre-processing system that utilizes color correction and image stitching techniques and extracts behavior features for manual analysis.

None
Vanishing Point Guided Natural Image Stitching 2020-04-06
Show

Recently, works on improving the naturalness of stitching images gain more and more extensive attention. Previous methods suffer the failures of severe projective distortion and unnatural rotation, especially when the number of involved images is large or images cover a very wide field of view. In this paper, we propose a novel natural image stitching method, which takes into account the guidance of vanishing points to tackle the mentioned failures. Inspired by a vital observation that mutually orthogonal vanishing points in Manhattan world can provide really useful orientation clues, we design a scheme to effectively estimate prior of image similarity. Given such estimated prior as global similarity constraints, we feed it into a popular mesh deformation framework to achieve impressive natural stitching performances. Compared with other existing methods, including APAP, SPHP, AANAP, and GSP, our method achieves state-of-the-art performance in both quantitative and qualitative experiments on natural image stitching.

13 pages, 16 figures None
From Perspective X-ray Imaging to Parallax-Robust Orthographic Stitching 2020-03-05
Show

Stitching images acquired under perspective projective geometry is a relevant topic in computer vision with multiple applications ranging from smartphone panoramas to the construction of digital maps. Image stitching is an equally prominent challenge in medical imaging, where the limited field-of-view captured by single images prohibits holistic analysis of patient anatomy. The barrier that prevents straight-forward mosaicing of 2D images is depth mismatch due to parallax. In this work, we leverage the Fourier slice theorem to aggregate information from multiple transmission images in parallax-free domains using fundamental principles of X-ray image formation. The semantics of the stitched image are restored using a novel deep learning strategy that exploits similarity measures designed around frequency, as well as dense and sparse spatial image content. Our pipeline, not only stitches images, but also provides orthographic reconstruction that enables metric measurements of clinically relevant quantities directly on the 2D image plane.

None
Analyzing an Imitation Learning Network for Fundus Image Registration Using a Divide-and-Conquer Approach 2019-12-19
Show

Comparison of microvascular circulation on fundoscopic images is a non-invasive clinical indication for the diagnosis and monitoring of diseases, such as diabetes and hypertensions. The differences between intra-patient images can be assessed quantitatively by registering serial acquisitions. Due to the variability of the images (i.e. contrast, luminosity) and the anatomical changes of the retina, the registration of fundus images remains a challenging task. Recently, several deep learning approaches have been proposed to register fundus images in an end-to-end fashion, achieving remarkable results. However, the results are difficult to interpret and analyze. In this work, we propose an imitation learning framework for the registration of 2D color funduscopic images for a wide range of applications such as disease monitoring, image stitching and super-resolution. We follow a divide-and-conquer approach to improve the interpretability of the proposed network, and analyze both the influence of the input image and the hyperparameters on the registration result. The results show that the proposed registration network reduces the initial target registration error up to 95%.

6 pages, 2 figures None
Breast Cancer: Model Reconstruction and Image Registration from Segmented Deformed Image using Visual and Force based Analysis 2019-10-15
Show

Breast lesion localization using tactile imaging is a new and developing direction in medical science. To achieve the goal, proper image reconstruction and image registration can be a valuable asset. In this paper, a new approach of the segmentation-based image surface reconstruction algorithm is used to reconstruct the surface of a breast phantom. In breast tissue, the sub-dermal vein network is used as a distinguishable pattern for reconstruction. The proposed image capturing device contacts the surface of the phantom, and surface deformation will occur due to applied force at the time of scanning. A novel force based surface rectification system is used to reconstruct a deformed surface image to its original structure. For the construction of the full surface from rectified images, advanced affine scale-invariant feature transform (A-SIFT) is proposed to reduce the affine effect in time when data capturing. Camera position based image stitching approach is applied to construct the final original non-rigid surface. The proposed model is validated in theoretical models and real scenarios, to demonstrate its advantages with respect to competing methods. The result of the proposed method, applied to path reconstruction, ends with a positioning accuracy of 99.7%

12 pages, 16 figures None
Poly-GAN: Multi-Conditioned GAN for Fashion Synthesis 2019-09-05
Show

We present Poly-GAN, a novel conditional GAN architecture that is motivated by Fashion Synthesis, an application where garments are automatically placed on images of human models at an arbitrary pose. Poly-GAN allows conditioning on multiple inputs and is suitable for many tasks, including image alignment, image stitching, and inpainting. Existing methods have a similar pipeline where three different networks are used to first align garments with the human pose, then perform stitching of the aligned garment and finally refine the results. Poly-GAN is the first instance where a common architecture is used to perform all three tasks. Our novel architecture enforces the conditions at all layers of the encoder and utilizes skip connections from the coarse layers of the encoder to the respective layers of the decoder. Poly-GAN is able to perform a spatial transformation of the garment based on the RGB skeleton of the model at an arbitrary pose. Additionally, Poly-GAN can perform image stitching, regardless of the garment orientation, and inpainting on the garment mask when it contains irregular holes. Our system achieves state-of-the-art quantitative results on Structural Similarity Index metric and Inception Score metric using the DeepFashion dataset.

None
DeepSWIR: A Deep Learning Based Approach for the Synthesis of Short-Wave InfraRed Band using Multi-Sensor Concurrent Datasets 2019-05-07
Show

Convolutional Neural Network (CNN) is achieving remarkable progress in various computer vision tasks. In the past few years, the remote sensing community has observed Deep Neural Network (DNN) finally taking off in several challenging fields. In this study, we propose a DNN to generate a predefined High Resolution (HR) synthetic spectral band using an ensemble of concurrent Low Resolution (LR) bands and existing HR bands. Of particular interest, the proposed network, namely DeepSWIR, synthesizes Short-Wave InfraRed (SWIR) band at 5m Ground Sampling Distance (GSD) using Green (G), Red (R) and Near InfraRed (NIR) bands at both 24m and 5m GSD, and SWIR band at 24m GSD. To our knowledge, the highest spatial resolution of commercially deliverable SWIR band is at 7.5m GSD. Also, we propose a Gaussian feathering based image stitching approach in light of processing large satellite imagery. To experimentally validate the synthesized HR SWIR band, we critically analyse the qualitative and quantitative results produced by DeepSWIR using state-of-the-art evaluation metrics. Further, we convert the synthesized DN values to Top Of Atmosphere (TOA) reflectance and compare with the corresponding band of Sentinel-2B. Finally, we show one real world application of the synthesized band by using it to map wetland resources over our region of interest.

None
Image Quality Assessment for Omnidirectional Cross-reference Stitching 2019-04-23
Show

Along with the development of virtual reality (VR), omnidirectional images play an important role in producing multimedia content with immersive experience. However, despite various existing approaches for omnidirectional image stitching, how to quantitatively assess the quality of stitched images is still insufficiently explored. To address this problem, we establish a novel omnidirectional image dataset containing stitched images as well as dual-fisheye images captured from standard quarters of 0$^\circ$, 90$^\circ$, 180$^\circ$ and 270$^\circ$. In this manner, when evaluating the quality of an image stitched from a pair of fisheye images (e.g., 0$^\circ$ and 180$^\circ$), the other pair of fisheye images (e.g., 90$^\circ$ and 270$^\circ$) can be used as the cross-reference to provide ground-truth observations of the stitching regions. Based on this dataset, we further benchmark six widely used stitching models with seven evaluation metrics for IQA. To the best of our knowledge, it is the first dataset that focuses on assessing the stitching quality of omnidirectional images.

None
Content-Preserving Image Stitching with Regular Boundary Constraints 2019-02-11
Show

This paper proposes an approach to content-preserving stitching of images with regular boundary constraints, which aims to stitch multiple images to generate a panoramic image with regular boundary. Existing methods treat image stitching and rectangling as two separate steps, which may result in suboptimal results as the stitching process is not aware of the further warping needs for rectangling. We address these limitations by formulating image stitching with regular boundaries in a unified optimization. Starting from the initial stitching results produced by traditional warping-based optimization, we obtain the irregular boundary from the warped meshes by polygon Boolean operations which robustly handle arbitrary mesh compositions, and by analyzing the irregular boundary construct a piecewise rectangular boundary. Based on this, we further incorporate straight line preserving and regular boundary constraints into the image stitching framework, and conduct iterative optimization to obtain an optimal piecewise rectangular boundary, thus can make the panoramic boundary as close as possible to a rectangle, while reducing unwanted distortions. We further extend our method to panoramic videos and selfie photography, by integrating the temporal coherence and portrait preservation into the optimization. Experiments show that our method efficiently produces visually pleasing panoramas with regular boundaries and unnoticeable distortions.

12 figures, 13 pages None
Tattoo Image Search at Scale: Joint Detection and Compact Representation Learning 2018-11-01
Show

The explosive growth of digital images in video surveillance and social media has led to the significant need for efficient search of persons of interest in law enforcement and forensic applications. Despite tremendous progress in primary biometric traits (e.g., face and fingerprint) based person identification, a single biometric trait alone cannot meet the desired recognition accuracy in forensic scenarios. Tattoos, as one of the important soft biometric traits, have been found to be valuable for assisting in person identification. However, tattoo search in a large collection of unconstrained images remains a difficult problem, and existing tattoo search methods mainly focus on matching cropped tattoos, which is different from real application scenarios. To close the gap, we propose an efficient tattoo search approach that is able to learn tattoo detection and compact representation jointly in a single convolutional neural network (CNN) via multi-task learning. While the features in the backbone network are shared by both tattoo detection and compact representation learning, individual latent layers of each sub-network optimize the shared features toward the detection and feature learning tasks, respectively. We resolve the small batch size issue inside the joint tattoo detection and compact representation learning network via random image stitch and preceding feature buffering. We evaluate the proposed tattoo search system using multiple public-domain tattoo benchmarks, and a gallery set with about 300K distracter tattoo images compiled from these datasets and images from the Internet. In addition, we also introduce a tattoo sketch dataset containing 300 tattoos for sketch-based tattoo search. Experimental results show that the proposed approach has superior performance in tattoo detection and tattoo search at scale compared to several state-of-the-art tattoo retrieval algorithms.

Techn...

Technical Report (15 pages, 14 figures)

None
GPU based Parallel Optimization for Real Time Panoramic Video Stitching 2018-10-22
Show

Panoramic video is a sort of video recorded at the same point of view to record the full scene. With the development of video surveillance and the requirement for 3D converged video surveillance in smart cities, CPU and GPU are required to possess strong processing abilities to make panoramic video. The traditional panoramic products depend on post processing, which results in high power consumption, low stability and unsatisfying performance in real time. In order to solve these problems,we propose a real-time panoramic video stitching framework.The framework we propose mainly consists of three algorithms, LORB image feature extraction algorithm, feature point matching algorithm based on LSH and GPU parallel video stitching algorithm based on CUDA.The experiment results show that the algorithm mentioned can improve the performance in the stages of feature extraction of images stitching and matching, the running speed of which is 11 times than that of the traditional ORB algorithm and 639 times than that of the traditional SIFT algorithm. Based on analyzing the GPU resources occupancy rate of each resolution image stitching, we further propose a stream parallel strategy to maximize the utilization of GPU resources. Compared with the L-ORB algorithm, the efficiency of this strategy is improved by 1.6-2.5 times, and it can make full use of GPU resources. The performance of the system accomplished in the paper is 29.2 times than that of the former embedded one, while the power dissipation is reduced to 10W.

under...

under review for Pattern Recognition Letters

None
Generalized Content-Preserving Warps for Image Stitching 2018-09-18
Show

Local misalignment caused by global homography is a common issue in image stitching task. Content-Preserving Warping (CPW) is a typical method to deal with this issue, in which geometric and photometric constraints are imposed to guide the warping process. One of its essential condition however, is colour consistency, and an elusive goal in real world applications. In this paper, we propose a Generalized Content-Preserving Warping (GCPW) method to alleviate this problem. GCPW extends the original CPW by applying a colour model that expresses the colour transformation between images locally, thus meeting the photometric constraint requirements for effective image stitching. We combine the photometric and geometric constraints and jointly estimate the colour transformation and the warped mesh vertexes, simultaneously. We align images locally with an optimal grid mesh generated by our GCPW method. Experiments on both synthetic and real images demonstrate that our new method is robust to colour variations, outperforming other state-of-the-art CPW-based image stitching methods.

None
Multiple Combined Constraints for Image Stitching 2018-09-18
Show

Several approaches to image stitching use different constraints to estimate the motion model between image pairs. These constraints can be roughly divided into two categories: geometric constraints and photometric constraints. In this paper, geometric and photometric constraints are combined to improve the alignment quality, which is based on the observation that these two kinds of constraints are complementary. On the one hand, geometric constraints (e.g., point and line correspondences) are usually spatially biased and are insufficient in some extreme scenes, while photometric constraints are always evenly and densely distributed. On the other hand, photometric constraints are sensitive to displacements and are not suitable for images with large parallaxes, while geometric constraints are usually imposed by feature matching and are more robust to handle parallaxes. The proposed method therefore combines them together in an efficient mesh-based image warping framework. It achieves better alignment quality than methods only with geometric constraints, and can handle larger parallax than photometric-constraint-based method. Experimental results on various images illustrate that the proposed method outperforms representative state-of-the-art image stitching methods reported in the literature.

None
An Approach For Stitching Satellite Images In A Bigdata Mapreduce Framework 2018-08-26
Show

In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.

Prese...

Presented at 4th International GeoAdvances Workshop

None
Feature-less Stitching of Cylindrical Tunnel 2018-06-27
Show

Traditional image stitching algorithms use transforms such as homography to combine different views of a scene. They usually work well when the scene is planar or when the camera is only rotated, keeping its position static. This severely limits their use in real world scenarios where an unmanned aerial vehicle (UAV) potentially hovers around and flies in an enclosed area while rotating to capture a video sequence. We utilize known scene geometry along with recorded camera trajectory to create cylindrical images captured in a given environment such as a tunnel where the camera rotates around its center. The captured images of the inner surface of the given scene are combined to create a composite panoramic image that is textured onto a 3D geometrical object in Unity graphical engine to create an immersive environment for end users.

6 pages None
Coarse-to-fine Seam Estimation for Image Stitching 2018-05-24
Show

Seam-cutting and seam-driven techniques have been proven effective for handling imperfect image series in image stitching. Generally, seam-driven is to utilize seam-cutting to find a best seam from one or finite alignment hypotheses based on a predefined seam quality metric. However, the quality metrics in most methods are defined to measure the average performance of the pixels on the seam without considering the relevance and variance among them. This may cause that the seam with the minimal measure is not optimal (perception-inconsistent) in human perception. In this paper, we propose a novel coarse-to-fine seam estimation method which applies the evaluation in a different way. For pixels on the seam, we develop a patch-point evaluation algorithm concentrating more on the correlation and variation of them. The evaluations are then used to recalculate the difference map of the overlapping region and reestimate a stitching seam. This evaluation-reestimation procedure iterates until the current seam changes negligibly comparing with the previous seams. Experiments show that our proposed method can finally find a nearly perception-consistent seam after several iterations, which outperforms the conventional seam-cutting and other seam-driven methods.

5 pages, 4 figures None
Graph-based Hypothesis Generation for Parallax-tolerant Image Stitching 2018-04-20
Show

The seam-driven approach has been proven fairly effective for parallax-tolerant image stitching, whose strategy is to search for an invisible seam from finite representative hypotheses of local alignment. In this paper, we propose a graph-based hypothesis generation and a seam-guided local alignment for improving the effectiveness and the efficiency of the seam-driven approach. The experiment demonstrates the significant reduction of number of hypotheses and the improved quality of naturalness of final stitching results, comparing to the state-of-the-art method SEAGULL.

3 pag...

3 pages, 3 figures, 2 tables

None
Quasi-homography warps in image stitching 2018-03-18
Show

The naturalness of warps is gaining extensive attentions in image stitching. Recent warps such as SPHP and AANAP, use global similarity warps to mitigate projective distortion (which enlarges regions), however, they necessarily bring in perspective distortion (which generates inconsistencies). In this paper, we propose a novel quasi-homography warp, which effectively balances the perspective distortion against the projective distortion in the non-overlapping region to create a more natural-looking panorama. Our approach formulates the warp as the solution of a bivariate system, where perspective distortion and projective distortion are characterized as slope preservation and scale linearization respectively. Because our proposed warp only relies on a global homography, thus it is totally parameter-free. A comprehensive experiment shows that a quasi-homography warp outperforms some state-of-the-art warps in urban scenes, including homography, AutoStitch and SPHP. A user study demonstrates that it wins most users' favor, comparing to homography and SPHP.

10 pages, 9 figures None
Ratio-Preserving Half-Cylindrical Warps for Natural Image Stitching 2018-03-18
Show

A novel warp for natural image stitching is proposed that utilizes the property of cylindrical warp and a horizontal pixel selection strategy. The proposed ratio-preserving half-cylindrical warp is a combination of homography and cylindrical warps which guarantees alignment by homography and possesses less projective distortion by cylindrical warp. Unlike previous approaches applying cylindrical warp before homography, we use partition lines to divide the image into different parts and apply homography in the overlapping region while a composition of homography and cylindrical warps in the non-overlapping region. The pixel selection strategy then samples the points in horizontal and reconstructs the image via interpolation to further reduce horizontal distortion by maintaining the ratio as similarity. With applying half-cylindrical warp and horizontal pixel selection, the projective distortion in vertical and horizontal is mitigated simultaneously. Experiments show that our warp is efficient and produces a more natural-looking stitched result than previous methods.

3 pages, 5 figures None
2D Reconstruction of Small Intestine's Interior Wall 2018-03-15
Show

Examining and interpreting of a large number of wireless endoscopic images from the gastrointestinal tract is a tiresome task for physicians. A practical solution is to automatically construct a two dimensional representation of the gastrointestinal tract for easy inspection. However, little has been done on wireless endoscopic image stitching, let alone systematic investigation. The proposed new wireless endoscopic image stitching method consists of two main steps to improve the accuracy and efficiency of image registration. First, the keypoints are extracted by Principle Component Analysis and Scale Invariant Feature Transform (PCA-SIFT) algorithm and refined with Maximum Likelihood Estimation SAmple Consensus (MLESAC) outlier removal to find the most reliable keypoints. Second, the optimal transformation parameters obtained from first step are fed to the Normalised Mutual Information (NMI) algorithm as an initial solution. With modified Marquardt-Levenberg search strategy in a multiscale framework, the NMI can find the optimal transformation parameters in the shortest time. The proposed methodology has been tested on two different datasets - one with real wireless endoscopic images and another with images obtained from Micro-Ball (a new wireless cubic endoscopy system with six image sensors). The results have demonstrated the accuracy and robustness of the proposed methodology both visually and quantitatively.

Journal draft None
Single-Perspective Warps in Natural Image Stitching 2018-03-07
Show

Results of image stitching can be perceptually divided into single-perspective and multiple-perspective. Compared to the multiple-perspective result, the single-perspective result excels in perspective consistency but suffers from projective distortion. In this paper, we propose two single-perspective warps for natural image stitching. The first one is a parametric warp, which is a combination of the as-projective-as-possible warp and the quasi-homography warp via dual-feature. The second one is a mesh-based warp, which is determined by optimizing a total energy function that simultaneously emphasizes different characteristics of the single-perspective warp, including alignment, naturalness, distortion and saliency. A comprehensive evaluation demonstrates that the proposed warp outperforms some state-of-the-art warps, including homography, APAP, AutoStitch, SPHP and GSP.

10 pages, 10 figures None
Image Stitching by Line-guided Local Warping with Global Similarity Constraint 2017-10-30
Show

Low-textured image stitching remains a challenging problem. It is difficult to achieve good alignment and it is easy to break image structures due to insufficient and unreliable point correspondences. Moreover, because of the viewpoint variations between multiple images, the stitched images suffer from projective distortions. To solve these problems, this paper presents a line-guided local warping method with a global similarity constraint for image stitching. Line features which serve well for geometric descriptions and scene constraints, are employed to guide image stitching accurately. On one hand, the line features are integrated into a local warping model through a designed weight function. On the other hand, line features are adopted to impose strong geometric constraints, including line correspondence and line colinearity, to improve the stitching performance through mesh optimization. To mitigate projective distortions, we adopt a global similarity constraint, which is integrated with the projective warps via a designed weight strategy. This constraint causes the final warp to slowly change from a projective to a similarity transformation across the image. Finally, the images undergo a two-stage alignment scheme that provides accurate alignment and reduces projective distortion. We evaluate our method on a series of images and compare it with several other methods. The experimental results demonstrate that the proposed method provides a convincing stitching performance and that it outperforms other state-of-the-art methods.

None
A fully dense and globally consistent 3D map reconstruction approach for GI tract to enhance therapeutic relevance of the endoscopic capsule robot 2017-05-18
Show

In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is emerging as a novel, minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Since the development of this technology, medical device companies and many research groups have made substantial progress in converting passive capsule endoscopes to robotic active capsule endoscopes with most of the functionality of current active flexible endoscopes. However, robotic capsule endoscopy still has some challenges. In particular, the use of such devices to generate a precise three-dimensional (3D) mapping of the entire inner organ remains an unsolved problem. Such global 3D maps of inner organs would help doctors to detect the location and size of diseased areas more accurately and intuitively, thus permitting more reliable diagnoses. To our knowledge, this paper presents the first complete pipeline for a complete 3D visual map reconstruction of the stomach. The proposed pipeline is modular and includes a preprocessing module, an image registration module, and a final shape-from-shading-based 3D reconstruction module; the 3D map is primarily generated by a combination of image stitching and shape-from-shading techniques, and is updated in a frame-by-frame iterative fashion via capsule motion inside the stomach. A comprehensive quantitative analysis of the proposed 3D reconstruction method is performed using an esophagus gastro duodenoscopy simulator, three different endoscopic cameras, and a 3D optical scanner.

None
Automated Robotic Monitoring and Inspection of Steel Structures and Bridges 2017-05-13
Show

This paper presents visual and 3D structure inspection for steel structures and bridges using a developed climbing robot. The robot can move freely on a steel surface, carry sensors, collect data and then send to the ground station in real time for monitoring as well as further processing. Steel surface image stitching and 3D map building are conducted to provide a current condition of the structure. Also, a computer vision-based method is implemented to detect surface defects on stitched images. The effectiveness of the climbing robot's inspection is tested in multiple circumstances to ensure strong steel adhesion and successful data collection. The detection method was also successfully evaluated on various test images, where steel cracks could be automatically identified, without the requirement of some heuristic reasoning.

None
Perception-based energy functions in seam-cutting 2017-01-22
Show

Image stitching is challenging in consumer-level photography, due to alignment difficulties in unconstrained shooting environment. Recent studies show that seam-cutting approaches can effectively relieve artifacts generated by local misalignment. Normally, seam-cutting is described in terms of energy minimization, however, few of existing methods consider human perception in their energy functions, which sometimes causes that a seam with minimum energy is not most invisible in the overlapping region. In this paper, we propose a novel perception-based energy function in the seam-cutting framework, which considers the nonlinearity and the nonuniformity of human perception in energy minimization. Our perception-based approach adopts a sigmoid metric to characterize the perception of color discrimination, and a saliency weight to simulate that human eyes incline to pay more attention to salient objects. In addition, our seam-cutting composition can be easily implemented into other stitching pipelines. Experiments show that our method outperforms the seam-cutting method of the normal energy function, and a user study demonstrates that our composed results are more consistent with human perception.

5 pages, 6 figures None
Variables effecting photomosaic reconstruction and ortho-rectification from aerial survey datasets 2016-11-10
Show

Unmanned aerial vehicles now make it possible to obtain high quality aerial imagery at a low cost, but processing those images into a single, useful entity is neither simple nor seamless. Specifically, there are factors that must be addressed when merging multiple images into a single coherent one. While ortho-rectification can be done, it tends to be expensive and time consuming. Image stitching offers a more economical, low-tech approach. However direct application tends to fail for low-elevation imagery due to one or more factors including insufficient keypoints, parallax issues, and homogeneity of the surveyed area. This paper discusses these problems and possible solutions when using techniques such as image stitching and structure from motion for generating ortho-rectified imagery. These are presented in terms of actual Irish projects including the Boland's Mills building in Dublin's city centre, the Kilmoon Cross Farm, and the Richview buildings on the University College Dublin campus. Implications for various Irish industries are explained in terms of both urban and rural projects.

Prese...

Presented at CERAI Conference 2016, Galway

None
Correspondence Insertion for As-Projective-As-Possible Image Stitching 2016-08-29
Show

Spatially varying warps are increasingly popular for image alignment. In particular, as-projective-as-possible (APAP) warps have been proven effective for accurate panoramic stitching, especially in cases with significant depth parallax that defeat standard homographic warps. However, estimating spatially varying warps requires a sufficient number of feature matches. In image regions where feature detection or matching fail, the warp loses guidance and is unable to accurately model the true underlying warp, thus resulting in poor registration. In this paper, we propose a correspondence insertion method for APAP warps, with a focus on panoramic stitching. Our method automatically identifies misaligned regions, and inserts appropriate point correspondences to increase the flexibility of the warp and improve alignment. Unlike other warp varieties, the underlying projective regularization of APAP warps reduces overfitting and geometric distortion, despite increases to the warp complexity. Comparisons with recent techniques for parallax-tolerant image stitching demonstrate the effectiveness and simplicity of our approach.

None
A Feature based Approach for Video Compression 2016-05-26
Show

It is a high cost problem for panoramic image stitching via image matching algorithm and not practical for real-time performance. In this paper, we take full advantage ofHarris corner invariant characterization method light intensity parallel meaning, translation and rotation, and made a realtime panoramic image stitching algorithm. According to the basic characteristics and performance FPGA classical algorithm, several modules such as the feature point extraction, and matching description is to optimize the feature-based logic. Real-time optimization system to achieve high precision match. The new algorithm process the image from pixel domain and obtained from CCD camera Xilinx Spartan-6 hardware platform. After the image stitching algorithm, will eventually form a portable interface to output high-definition content on the display. The results showed that, the proposed algorithm has higher precision with good real-time performance and robustness.

Confe...

Conference on Image Recognition, 2016

None
Image stitching with perspective-preserving warping 2016-05-17
Show

Image stitching algorithms often adopt the global transformation, such as homography, and work well for planar scenes or parallax free camera motions. However, these conditions are easily violated in practice. With casual camera motions, variable taken views, large depth change, or complex structures, it is a challenging task for stitching these images. The global transformation model often provides dreadful stitching results, such as misalignments or projective distortions, especially perspective distortion. To this end, we suggest a perspective-preserving warping for image stitching, which spatially combines local projective transformations and similarity transformation. By weighted combination scheme, our approach gradually extrapolates the local projective transformations of the overlapping regions into the non-overlapping regions, and thus the final warping can smoothly change from projective to similarity. The proposed method can provide satisfactory alignment accuracy as well as reduce the projective distortions and maintain the multi-perspective view. Experiments on a variety of challenging images confirm the efficiency of the approach.

ISPRS...

ISPRS 2016 - XXIII ISPRS Congress: Prague, Czech Republic, 2016

None
A Tiered Move-making Algorithm for General Non-submodular Pairwise Energies 2014-03-25
Show

A large number of problems in computer vision can be modelled as energy minimization problems in a Markov Random Field (MRF) or Conditional Random Field (CRF) framework. Graph-cuts based $\alpha$-expansion is a standard move-making method to minimize the energy functions with sub-modular pairwise terms. However, certain problems require more complex pairwise terms where the $\alpha$-expansion method is generally not applicable. In this paper, we propose an iterative {\em tiered move making algorithm} which is able to handle general pairwise terms. Each move to the next configuration is based on the current labeling and an optimal tiered move, where each tiered move requires one application of the dynamic programming based tiered labeling method introduced in Felzenszwalb et. al. \cite{tiered_cvpr_felzenszwalbV10}. The algorithm converges to a local minimum for any general pairwise potential, and we give a theoretical analysis of the properties of the algorithm, characterizing the situations in which we can expect good performance. We first evaluate our method on an object-class segmentation problem using the Pascal VOC-11 segmentation dataset where we learn general pairwise terms. Further we evaluate the algorithm on many other benchmark labeling problems such as stereo, image segmentation, image stitching and image denoising. Our method consistently gets better accuracy and energy values than alpha-expansion, loopy belief propagation (LBP), quadratic pseudo-boolean optimization (QPBO), and is competitive with TRWS.

None
Combinatorial Continuous Maximal Flows 2011-12-28
Show

Maximum flow (and minimum cut) algorithms have had a strong impact on computer vision. In particular, graph cuts algorithms provide a mechanism for the discrete optimization of an energy functional which has been used in a variety of applications such as image segmentation, stereo, image stitching and texture synthesis. Algorithms based on the classical formulation of max-flow defined on a graph are known to exhibit metrication artefacts in the solution. Therefore, a recent trend has been to instead employ a spatially continuous maximum flow (or the dual min-cut problem) in these same applications to produce solutions with no metrication errors. However, known fast continuous max-flow algorithms have no stopping criteria or have not been proved to converge. In this work, we revisit the continuous max-flow problem and show that the analogous discrete formulation is different from the classical max-flow problem. We then apply an appropriate combinatorial optimization technique to this combinatorial continuous max-flow CCMF problem to find a null-divergence solution that exhibits no metrication artefacts and may be solved exactly by a fast, efficient algorithm with provable convergence. Finally, by exhibiting the dual problem of our CCMF formulation, we clarify the fact, already proved by Nozawa in the continuous setting, that the max-flow and the total variation problems are not always equivalent.

26 pages None