forked from Rockyzsu/stock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathipo_stock.py
107 lines (98 loc) · 3.34 KB
/
ipo_stock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#-*-coding=utf-8-*-
import tushare as ts
import numpy as np
import datetime,os
import pandas as pd
import sys
from settings import get_engine
reload(sys)
sys.setdefaultencoding('utf8')
def ipo_rank():
new_stk_df=ts.new_stocks()
# print('info',new_stk_df.info())
# new_stk_df.dropna(inplace=True,axis=0)
# print('lens after drop ',len(new_stk_df))
# new_stk_df['issue_date']=new_stk_df['issue_date'].astype('datetime64[ns]')
new_stk_df['issue_date']=pd.to_datetime(new_stk_df['issue_date'])
# new_stk_df['issue_date']=pd.to_datetime(new_stk_df['issue_date'])
# new_stk_df=new_stk_df.set_index('issue_date')
# print(new_stk_df2.info())
# print(new_stk_df2)
# print(new_stk_df2.truncate(after=date))
# print(new_stk_df2['2017-11-01':])
# print(len(new_stk_df))
# print(new_stk_df.head())
# print(new_stk_df.head())
# print(new_stk_df.info())
df_2017 = new_stk_df[new_stk_df['issue_date']>'2017-01-01']
# df_2017.to_excel('2017_new_stock.xls')
# print(new_stk_df.ix['2017-01-01':,:])
pro=[]
# print(df_2017.iloc[0]['issue_date'])
# '''
for i in range(len(df_2017)):
s=df_2017.iloc[i]
p=profit(s['code'],s['issue_date'].strftime('%Y-%m-%d'),'2017-12-29')
pro.append(p)
df_2017['raise']=pro
df_2017.to_excel('2017newstockprofit.xls')
# '''
def profit(code,start,end):
# conn=ts.get_apis()
try:
# df=ts.bar(code,conn=conn,start_date=start,end_date=end)
df=ts.get_k_data(code,start=start,end=end)
except Exception as e:
print(e)
return None
try:
p=(df['close'].iloc[-1]-df['close'].iloc[0])/df['close'].iloc[0]*100.00
except Exception as e:
print(e)
return None
# print(p)
return round(p,2)
def price_change():
basic=ts.get_stock_basics()
pro=[]
print(basic.info())
print(basic.head(10))
# basic.to_csv('basic2017.xls',encoding='gbk')
# df=pd.read_csv('basic2017.xls',encoding='gbk')
# df.to_excel('basic2017.xls',encoding='gbk')
# '''
for code in basic.index.values:
print(code)
p=profit(code,'2016-12-31','2017-12-29')
pro.append(p)
basic['price_change']=pro
basic.to_csv('2017_all_price_change.xls',encoding='gbk')
df=pd.read_csv('2017_all_price_change.xls',encoding='gbk')
df.to_excel('2017_all_price_change.xls',encoding='gbk')
# basic.to_excel('2017_all_price_change.xls',encoding='utf-8')
# '''
def analysis():
df=pd.read_excel('2017_all_price_change.xls',encoding='gbk')
# engine=get_engine('stock')
# df.to_sql('2017yearsPriceChange',engine)
# print(df.head())
# dfx = df[df['price_change'].notnull()]
# new_df = dfx.sort_values(by='price_change')
# print(new_df[['code','name','industry','area','pe','timeToMarket','holders','price_change']].head(20))
# print(new_df[new_df.isnull()==True])
# print(new_df.loc[1242])
# new_df=new_df.reset_index()
# print(len(new_df[new_df['price_change'].isnull()]))
# print(dfx.tail(10))
# print(new_df.head(10))
df=df.sort_values(by='price_change',ascending=False)
# print(df.head(5))
df.to_excel('2017-year.xls',encoding='gbk')
def main():
# ipo_rank()
# price_change()
analysis()
if __name__=='__main__':
data_path=os.path.join(os.getcwd(),'data')
os.chdir(data_path)
main()