-
Notifications
You must be signed in to change notification settings - Fork 4
/
test_few_shot.py
129 lines (110 loc) · 4.48 KB
/
test_few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
import yaml
import pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy.stats
from tqdm import tqdm
from torch.utils.data import DataLoader
from sklearn.metrics import roc_auc_score
import datasets
import models
import utils
import utils.few_shot as fs
from datasets.samplers import CategoriesSampler
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
se = scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1)
return h
def main(config):
# dataset
dataset = datasets.make(config['dataset'], **config['dataset_args'])
utils.log('dataset: {} (x{}), {}'.format(
dataset[0][0].shape, len(dataset), dataset.n_classes))
if not args.sauc:
n_way = 5
else:
n_way = 2
n_shot, n_query = args.shot, 15
n_batch = 200
ep_per_batch = 4
batch_sampler = CategoriesSampler(
dataset.label, n_batch, n_way, n_shot + n_query,
ep_per_batch=ep_per_batch)
loader = DataLoader(dataset, batch_sampler=batch_sampler,
num_workers=8, pin_memory=True)
# model
if config.get('load') is None:
model = models.make('meta-baseline', encoder=None)
else:
model = models.load(torch.load(config['load']))
if config.get('load_encoder') is not None:
encoder = models.load(torch.load(config['load_encoder'])).encoder
model.encoder = encoder
if config.get('_parallel'):
model = nn.DataParallel(model)
model.eval()
utils.log('num params: {}'.format(utils.compute_n_params(model)))
# testing
aves_keys = ['vl', 'va']
aves = {k: utils.Averager() for k in aves_keys}
test_epochs = args.test_epochs
np.random.seed(0)
va_lst = []
for epoch in range(1, test_epochs + 1):
for data, _ in tqdm(loader, leave=False):
x_shot, x_query = fs.split_shot_query(
data.cuda(), n_way, n_shot, n_query,
ep_per_batch=ep_per_batch)
with torch.no_grad():
if not args.sauc:
x_shot, x_query, metric = model(x_shot, x_query)
x_shot = torch.mean(x_shot, -2)
logits = utils.compute_logits(
x_query, x_shot, metric=metric, temp=model.temp).view(-1, n_way)
label = fs.make_nk_label(n_way, n_query,
ep_per_batch=ep_per_batch).cuda()
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
aves['vl'].add(loss.item(), len(data))
aves['va'].add(acc, len(data))
va_lst.append(acc)
else:
x_shot = x_shot[:, 0, :, :, :, :].contiguous()
shot_shape = x_shot.shape[:-3]
img_shape = x_shot.shape[-3:]
bs = shot_shape[0]
p = model.encoder(x_shot.view(-1, *img_shape)).reshape(
*shot_shape, -1).mean(dim=1, keepdim=True)
q = model.encoder(x_query.view(-1, *img_shape)).view(
bs, -1, p.shape[-1])
p = F.normalize(p, dim=-1)
q = F.normalize(q, dim=-1)
s = torch.bmm(q, p.transpose(2, 1)).view(bs, -1).cpu()
for i in range(bs):
k = s.shape[1] // 2
y_true = [1] * k + [0] * k
acc = roc_auc_score(y_true, s[i])
aves['va'].add(acc, len(data))
va_lst.append(acc)
print('test epoch {}: acc={:.2f} +- {:.2f} (%), loss={:.4f} (@{})'.format(
epoch, aves['va'].item() * 100,
mean_confidence_interval(va_lst) * 100,
aves['vl'].item(), _[-1]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/test_few_shot.yaml')
parser.add_argument('--shot', type=int, default=1)
parser.add_argument('--test-epochs', type=int, default=10)
parser.add_argument('--sauc', action='store_true')
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.FullLoader)
if len(args.gpu.split(',')) > 1:
config['_parallel'] = True
utils.set_gpu(args.gpu)
main(config)