There are several characteristics in which supercomputers can differ from other nodes with respect to CernVM-FS
- Fuse is not allowed on the individual nodes
- Individual nodes do not have Internet connectivity
- Nodes have no local hard disk to store the CernVM-FS cache
These problems can be overcome as described in the following sections.
CernVM-FS can be run as an unprivileged user under several different scenarios. See documentation about that in the Security :ref:`sct_running_client_as_normal_user` section.
Instead of accessing /cvmfs
through a Fuse module, processes can use the
Parrot connector. The parrot
connector works on x86_64 Linux if the ptrace
system call is not disabled.
In contrast to a plain copy of a CernVM-FS repository to a shared file system,
this approach has the following advantages:
- Millions of synchronized metadata operations per node (path lookups, in particular) will not drown the shared cluster file system but resolve locally in the parrot-cvmfs clients.
- The file system is always consistent; applications never see half-synchronized directories.
- After initial preloading, only change sets need to be transferred to the shared file system. This is much faster than rsync, which always has to browse the entire name space.
- Identical files are internally deduplicated. While space of the order of terabytes is usually not an issue for HPC shared file systems, file system caches benefit from deduplication. It is also possible to preload only specific parts of a repository namespace.
- Support for extra functionality implemented by CernVM-FS such as versioning and variant symlinks (symlinks resolved according to environment variables).
When there is no possible way to run the CernVM-FS client, an option that has been used on some HPC systems is to download entire or partial snapshots of CernVM-FS repositories using the :ref:`cvmfs_shrinkwrap utility <cpt_shrinkwrap>`. These snapshots are also sometimes called "HPC fat container images". This has many disadvantages compared to running a CernVM-FS client, so it is typically a last resort.
Some HPC sites have tried running the cvmfs client on just one server and exporting to worker nodes over :ref:`NFS <sct_nfs_server_mode>`. These installations can be made to work, but they are very inefficient, and often run into operational problems. If you want to try it out anyway using the Cray DVS please see the :ref:`workaround <sct_nfs_interleaved>` on inode handling and DVS export.
Note
NFS export is not a recommended setup to run cvmfs.
When the CernVM-FS client can be installed on the worker node but for
whatever reason on-demand downloading to a local cache is difficult, the
cvmfs_preload utility
can be used to preload a CernVM-FS cache onto the shared cluster file system.
Internally it uses the same code that is used to replicate between CernVM-FS
stratum 0 and stratum 1. The cvmfs_preload
command is a self-extracting
binary with no further dependencies and should work on a majority of x86_64
Linux hosts. Note however that this method can significantly strain the
cluster file system's metadata server(s) and that many HPC systems have
had better results with
:ref:`loopback filesystems <sct_loopback_filesystems>`
as node caches as discussed below.
The cvmfs_preload
command replicates from a stratum 0 (not from a
stratum 1). Because this induces significant load on the source server,
stratum 0 administrators should be informed before using their server as a
source. As an example, in order to preload the ALICE repository into
/shared/cache, one could run from a login node
cvmfs_preload -u http://cvmfs-stratum-zero-hpc.cern.ch:8000/cvmfs/alice.cern.ch -r /shared/cache
This will preload the entire repository. In order to preload only specific parts of the namespace, you can create a _dirtab_ file with path prefixes. The path prefixes must not involve symbolic links. An example dirtab file for ALICE could look like
/example/etc /example/x86_64-2.6-gnu-4.8.3/Modules /example/x86_64-2.6-gnu-4.8.3/Packages/GEANT3 /example/x86_64-2.6-gnu-4.8.3/Packages/ROOT /example/x86_64-2.6-gnu-4.8.3/Packages/gcc /example/x86_64-2.6-gnu-4.8.3/Packages/AliRoot/v5*
The corresponding invocation of cvmfs_preload
is
cvmfs_preload -u http://cvmfs-stratum-zero-hpc.cern.ch:8000/cvmfs/alice.cern.ch -r /shared/cache \ -d </path/to/dirtab>
The initial preloading can take several hours to a few days. Subsequent invocations of the same command only transfer a change set and typically finish within seconds or minutes. These subsequent invocations need to be either done manually when necessary or scheduled for instance with a cron job.
The cvmfs_preload
command can preload files from multiple repositories
into the same cache directory.
In order to access a preloaded cache from the nodes, set the path to the directory as an Alien Cache. Since there won't be cache misses, parrot or fuse clients do not need to download additional files from the network.
If clients do have network access, they might find a repository version online
that is newer than the preloaded version in the cache. This results in
conflicts with cvmfs_preload
or in errors if the cache directory is
read-only. Therefore, we recommend to explicitly disable network access for the
parrot process on the nodes, for instance by setting
HTTP_PROXY='INVALID-PROXY'
before the invocation of parrot_run
.
In order to compile cvmfs_preload
from sources, use the
-DBUILD_PRELOADER=yes
cmake option.
If nodes have Internet access but no local hard disk, it is preferable to provide the CernVM-FS caches as loopback file systems on the cluster file system. This way, CernVM-FS automatically populates the cache with the latest upstream content. A Fuse mounted CernVM-FS will also automatically manage the cache quota.
This approach requires a separate file for every node (not every mountpoint) on
the cluster file system. The file should be 15% larger than the configured
CernVM-FS cache size on the nodes, and it should be formatted with an ext3/4 or
an xfs file system. These files can be created with the dd
and mkfs
utilities. Nodes can mount these files as loopback file systems from the
shared file system.
Because there is only a single file for every node, the parallelism of the cluster file system can be exploited and all the requests from CernVM-FS circumvent the cluster file system's metadata server(s). That can be a very large advantage because very often the metadata server is the bottleneck under typical workloads.
Diskless compute nodes can also combine an in-memory cache with a preloaded directory on the shared cluster file system. An example configuration can be found in Section :ref:`sct_cache_advanced_example`.