-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelational_vae_pdsst.py
119 lines (102 loc) · 3.7 KB
/
relational_vae_pdsst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from typing import Tuple
import tensorflow as tf
from MLkit import tf_networks as nets
from utils.ae_utils import run_ae, default_feeder
from utils.data_utils import import_data, DataName
from utils.feature_eval import interpolation_setup, view_dist_setup, view_disentangle_setup
data_name = DataName.PDSST
data, data_test = import_data(data_name)
name = 'Rel-VAE'
dim_z = 32
mb_size = 128
input_size = [None] + data.dim_X
X = tf.placeholder(tf.float32, shape=[None, data.dim_x])
X__ = tf.reshape(X, shape=[-1] + data.dim_X, name='X__')
def conv80_ch(x__: tf.Tensor, is_train=True) -> tf.Tensor:
net = tf.layers.batch_normalization(x__, training=is_train)
# In: 80x80
net = tf.layers.conv2d(net, 16, 5, name='conv1')
net = tf.layers.batch_normalization(net, training=is_train)
net = tf.nn.relu(net)
net = tf.layers.max_pooling2d(net, 3, 2, name='pool1')
# 37x37
net = tf.layers.conv2d(net, 32, 5, name='conv2')
net = tf.layers.batch_normalization(net, training=is_train)
net = tf.nn.relu(net)
# 33x33
net = tf.layers.max_pooling2d(net, 3, 2, name='pool2')
# 16x16
net = tf.layers.conv2d(net, 64, 5, name='conv3')
net = tf.layers.batch_normalization(net, training=is_train)
net = tf.nn.relu(net)
# 12x12
net = tf.layers.max_pooling2d(net, 3, 2, name='pool3')
# 5x5
return net
def get_R(net_in):
with tf.variable_scope('R'):
n_objects = int(net.shape[-2])
n_relations = n_objects * (n_objects - 1) / 2
attn_in = tf.reshape(net_in, [-1, net_in.shape[-1] * n_objects])
attn = tf.sigmoid(nets.dense_net(attn_in, [1024, 1024, n_relations]))
R_Es = []
counter = 0
for i in range(n_objects):
for j in range(i):
print(i, j)
with tf.variable_scope('R_R', reuse=tf.AUTO_REUSE):
pair = tf.concat([net_in[:, i, :], net_in[:, j, :]], axis=1)
attn_ij = tf.expand_dims(attn[:, counter], -1)
R_Es.append(attn_ij * nets.dense_net(pair, [1024, 512, 512]))
counter += 1
return tf.add_n(R_Es, 'R_E') / n_relations
with tf.variable_scope('E'):
net = conv80_ch(X__)
n_objects = int(net.shape[1] * net.shape[2])
net = tf.reshape(net, [-1, n_objects, net.shape[-1]])
R_E = get_R(net)
Z, kl_losses = nets.get_variational_layer(R_E, dim_z)
with tf.variable_scope('G'):
n_objects = 8
dim_objects = 64
net = nets.dense_net(Z, [n_objects*dim_objects])
net = tf.reshape(net, (-1, n_objects, dim_objects))
R_G = get_R(net)
G_logits = nets.deconv80(R_G, out_channels=data.dim_X[-1], is_train=True)
G_X = tf.nn.sigmoid(G_logits)
sum_dims = list(range(1, 1 + len(data.dim_X)))
recon_loss = tf.reduce_mean(tf.reduce_sum((G_X - X__) ** 2, sum_dims), 0)
# recon_loss = tf.reduce_mean(tf.abs(G_X - X__), 1)
loss = dim_z * tf.reduce_mean(kl_losses) + recon_loss
train = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss)
print([_.name for _ in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)])
interpolation = interpolation_setup(
X,
G_X,
data.dim_X,
Z,
)
view_dist = view_dist_setup(X, Z)
view_disentangle = view_disentangle_setup(
X,
G_X,
data.dim_X,
Z,
)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
data_feed = default_feeder(data, X, mb_size)
print(sess.run([recon_loss, tf.reduce_mean(kl_losses)], feed_dict=data_feed))
run_ae(data=data,
mb_size=mb_size,
interpolation=interpolation,
feature_eval=None,
view_dist=view_dist,
view_disentangle=view_disentangle,
train=train,
loss=loss,
X=X,
G_X=G_X,
sess=sess,
experiment_id=name,
max_iter=10000000)