-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpdxearch_simple.py
62 lines (56 loc) · 2.25 KB
/
pdxearch_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import math
import numpy as np
import sklearn.datasets
from sklearn.model_selection import train_test_split
from examples_utils import TicToc
from pdxearch.index_factory import IndexPDXADSamplingIVFFlat, IndexPDXBONDIVFFlat
"""
PDXearch (pruned search) + ADSampling with an IVF index (built with FAISS)
This example uses a random collection of vectors
"""
if __name__ == "__main__":
num_dimensions = 768
num_embeddings = 100_000
num_query_embeddings = 1000
knn = 10
nprobe = 64
print(f'Running example: PDXearch + ADSampling (IVFFlat)\n- D={num_dimensions}\n- k={knn}\n- nprobe={nprobe}\n- dataset=RANDOM')
X, _ = sklearn.datasets.make_blobs(n_samples=num_embeddings, n_features=num_dimensions, centers=1000, random_state=1)
X = X.astype(np.float32)
data, queries = train_test_split(X, test_size=num_query_embeddings)
nbuckets = 1 * math.ceil(math.sqrt(num_embeddings))
index = IndexPDXADSamplingIVFFlat(ndim=num_dimensions, nbuckets=nbuckets)
print('Preprocessing')
index.preprocess(data) # Preprocess vectors with ADSampling
print('Training IVF')
index.train(data) # Train IVF with FAISS
print('PDXifying')
index.add_load(data) # Add vectors and load PDX index in memory
print(f'{len(queries)} queries with PDX')
times = []
clock = TicToc()
results = []
for i in range(num_query_embeddings):
q = np.ascontiguousarray(queries[i])
clock.tic()
index.search(q, knn, nprobe=nprobe)
times.append(clock.toc())
print('PDX avg. time:', sum(times) / float(len(times)))
# To check results...
# results = index.search(queries[0], knn)
# for result in results:
# print(result.index, result.distance)
times = []
clock = TicToc()
results = []
queries = index.preprocess(queries, inplace=False)
index.core_index.index.nprobe = nprobe
print(f'{len(queries)} queries with FAISS')
for i in range(num_query_embeddings):
q = np.ascontiguousarray(np.array([queries[i]]))
clock.tic()
index.core_index.index.search(q, k=knn)
times.append(clock.toc())
print('FAISS avg. time:', sum(times) / float(len(times)))
# To check results...
# print(index.core_index.index.search(np.array([queries[0]]), k=knn))