-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject_tom_data.R
49 lines (38 loc) · 1.44 KB
/
project_tom_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
require(corrplot)
# data from the test objective matrix collected by hand.
file <- "data/project_tom_data.csv"
data <- read.csv(file, header=TRUE)
# anonymise the project names
plot(data$totalJiraDefects~data$pmBudgetHrs)
plot(data$totalJiraDefects~data$tmCardHrs)
plot(data$teamSize~data$tmCardHrs)
plot(data$requirementCnt~data$tmCardHrs)
nums <- data.frame(requirementCnt=data$requirementCnt,
tcRun=data$tcRun,
totalJiraDefects=data$totalJiraDefects,
jiraAssigneeCnt=data$jiraAssigneeCnt,
projHrsDelta=data$projHrsDelta,
teamSize=data$teamSize,
tcCount=data$tcCount,
totalJiraClosed=data$totalJiraClosed,
jiraComponents=data$jiraComponents,
totalBudgetHrs=data$totalBudgetHrs,
tmCardHrs=data$tmCardHrs,
tcNA=data$tcNA,
tcComponents=data$tcComponents,
projBudgetHrs=data$projBudgetHrs,
totalHrsUsed=data$totalHrsUsed,
tcFaults=data$tcFaults,
totalJiraNonIssue=data$totalJiraNonIssue,
pmBudgetHrs=data$pmBudgetHrs,
totalhrsDelta=data$totalhrsDelta)
C <- cor(nums)
corrplot(C)
d <- density(data$teamSize)
plot(d)
d2 <- density(data$projBudgetHrs)
plot(d2)
d3 <- density(data$tmCardHrs)
plot(d3)
lines(d2, col="red")
d3