forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_pipelines_example.py
155 lines (131 loc) · 6.22 KB
/
run_pipelines_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from pprint import pprint
from pipelines.document_stores import FAISSDocumentStore
from pipelines.nodes import (
AnswerExtractor,
DensePassageRetriever,
ErnieRanker,
QAFilter,
QuestionGenerator,
)
from pipelines.pipelines import QAGenerationPipeline, SemanticSearchPipeline
from pipelines.utils import convert_files_to_dicts, print_documents
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to run dense_qa system, defaults to gpu.")
parser.add_argument("--index_name", default='faiss_index', type=str, help="The ann index name of FAISS.")
parser.add_argument("--max_seq_len_query", default=64, type=int, help="The maximum total length of query after tokenization.")
parser.add_argument("--max_seq_len_passage", default=256, type=int, help="The maximum total length of passage after tokenization.")
parser.add_argument("--retriever_batch_size", default=16, type=int, help="The batch size of retriever to extract passage embedding for building ANN index.")
parser.add_argument("--doc_dir", default="data/my_data", type=str, help="The question-answer pairs file to be loaded when building ANN index.")
parser.add_argument("--source_file", default=None, type=str, help="The source raw texts file to be loaded when creating question-answer pairs.")
args = parser.parse_args()
# yapf: enable
def dense_faq_pipeline():
use_gpu = True if args.device == "gpu" else False
faiss_document_store = "faiss_document_store.db"
if os.path.exists(args.index_name) and os.path.exists(faiss_document_store):
# connect to existed FAISS Index
document_store = FAISSDocumentStore.load(args.index_name)
retriever = DensePassageRetriever(
document_store=document_store,
query_embedding_model="rocketqa-zh-dureader-query-encoder",
passage_embedding_model="rocketqa-zh-dureader-query-encoder",
max_seq_len_query=args.max_seq_len_query,
max_seq_len_passage=args.max_seq_len_passage,
batch_size=args.retriever_batch_size,
use_gpu=use_gpu,
embed_title=False,
)
else:
dicts = convert_files_to_dicts(
dir_path=args.doc_dir, split_paragraphs=True, split_answers=True, encoding="utf-8"
)
if os.path.exists(args.index_name):
os.remove(args.index_name)
if os.path.exists(faiss_document_store):
os.remove(faiss_document_store)
document_store = FAISSDocumentStore(embedding_dim=768, faiss_index_factory_str="Flat")
document_store.write_documents(dicts)
retriever = DensePassageRetriever(
document_store=document_store,
query_embedding_model="rocketqa-zh-dureader-query-encoder",
passage_embedding_model="rocketqa-zh-dureader-query-encoder",
max_seq_len_query=args.max_seq_len_query,
max_seq_len_passage=args.max_seq_len_passage,
batch_size=args.retriever_batch_size,
use_gpu=use_gpu,
embed_title=False,
)
# update Embedding
document_store.update_embeddings(retriever)
# save index
document_store.save(args.index_name)
# Ranker
ranker = ErnieRanker(model_name_or_path="rocketqa-zh-dureader-cross-encoder", use_gpu=use_gpu)
pipe = SemanticSearchPipeline(retriever, ranker)
pipeline_params = {"Retriever": {"top_k": 50}, "Ranker": {"top_k": 1}}
prediction = pipe.run(query="世界上最早的地雷发明者是谁?", params=pipeline_params)
print_documents(prediction, print_name=False, print_meta=True)
def qa_generation_pipeline():
answer_extractor = AnswerExtractor(
model="uie-base-answer-extractor",
device=args.device,
schema=["答案"],
max_answer_candidates=3,
position_prob=0.01,
batch_size=1,
)
question_generator = QuestionGenerator(
model="unimo-text-1.0-question-generation",
device=args.device,
num_return_sequences=2,
)
qa_filter = QAFilter(
model="uie-base-qa-filter",
device=args.device,
schema=["答案"],
position_prob=0.1,
)
pipe = QAGenerationPipeline(
answer_extractor=answer_extractor, question_generator=question_generator, qa_filter=qa_filter
)
pipeline_params = {"QAFilter": {"is_filter": True}}
# list example
meta = [
"世界上最早的电影院是美国洛杉矶的“电气剧场”,建于1902年。",
"以脸书为例,2020年时,54%的成年人表示,他们从该平台获取新闻。而现在,这个数字下降到了44%。与此同时,YouTube在过去几年里一直保持平稳,约有三分之一的用户在该平台上获取新闻。",
]
prediction = pipe.run(meta=meta, params=pipeline_params)
prediction = prediction["filtered_cqa_triples"]
pprint(prediction)
# file example
if args.source_file:
meta = []
with open(args.source_file, "r", encoding="utf-8") as rf:
for line in rf:
meta.append(line.strip())
prediction = pipe.run(meta=meta, params=pipeline_params)
prediction = prediction["filtered_cqa_triples"]
if not os.path.exists(args.doc_dir):
os.makedirs(args.doc_dir)
with open(os.path.join(args.doc_dir, "generated_qa_pairs.txt"), "w", encoding="utf-8") as wf:
for pair in prediction:
wf.write(pair["synthetic_question"].strip() + "\t" + pair["synthetic_answer"].strip() + "\n")
if __name__ == "__main__":
qa_generation_pipeline()
dense_faq_pipeline()