forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ann_util.py
57 lines (43 loc) Β· 2.04 KB
/
ann_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=UTF-8
import numpy as np
import hnswlib
from paddlenlp.utils.log import logger
def build_index(args, data_loader, model):
index = hnswlib.Index(space="ip", dim=args.output_emb_size)
# Initializing index
# max_elements - the maximum number of elements (capacity). Will throw an exception if exceeded
# during insertion of an element.
# The capacity can be increased by saving/loading the index, see below.
#
# ef_construction - controls index search speed/build speed tradeoff
#
# M - is tightly connected with internal dimensionality of the data. Strongly affects memory consumption (~M)
# Higher M leads to higher accuracy/run_time at fixed ef/efConstruction
index.init_index(max_elements=args.hnsw_max_elements, ef_construction=args.hnsw_ef, M=args.hnsw_m)
# Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
index.set_ef(args.hnsw_ef)
# Set number of threads used during batch search/construction
# By default using all available cores
index.set_num_threads(16)
logger.info("start build index..........")
all_embeddings = []
for text_embeddings in model.get_semantic_embedding(data_loader):
all_embeddings.append(text_embeddings.numpy())
all_embeddings = np.concatenate(all_embeddings, axis=0)
index.add_items(all_embeddings)
logger.info("Total index number:{}".format(index.get_current_count()))
return index