forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tokenizers.py
252 lines (212 loc) Β· 7.7 KB
/
tokenizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Most of the tokenizers code here is copied from DrQA codebase to avoid adding extra dependency
"""
import copy
import logging
import regex
import spacy
logger = logging.getLogger(__name__)
class Tokens(object):
"""A class to represent a list of tokenized text."""
TEXT = 0
TEXT_WS = 1
SPAN = 2
POS = 3
LEMMA = 4
NER = 5
def __init__(self, data, annotators, opts=None):
self.data = data
self.annotators = annotators
self.opts = opts or {}
def __len__(self):
"""The number of tokens."""
return len(self.data)
def slice(self, i=None, j=None):
"""Return a view of the list of tokens from [i, j)."""
new_tokens = copy.copy(self)
new_tokens.data = self.data[i:j]
return new_tokens
def untokenize(self):
"""Returns the original text (with whitespace reinserted)."""
return "".join([t[self.TEXT_WS] for t in self.data]).strip()
def words(self, uncased=False):
"""Returns a list of the text of each token
Args:
uncased: lower cases text
"""
if uncased:
return [t[self.TEXT].lower() for t in self.data]
else:
return [t[self.TEXT] for t in self.data]
def offsets(self):
"""Returns a list of [start, end) character offsets of each token."""
return [t[self.SPAN] for t in self.data]
def pos(self):
"""Returns a list of part-of-speech tags of each token.
Returns None if this annotation was not included.
"""
if "pos" not in self.annotators:
return None
return [t[self.POS] for t in self.data]
def lemmas(self):
"""Returns a list of the lemmatized text of each token.
Returns None if this annotation was not included.
"""
if "lemma" not in self.annotators:
return None
return [t[self.LEMMA] for t in self.data]
def entities(self):
"""Returns a list of named-entity-recognition tags of each token.
Returns None if this annotation was not included.
"""
if "ner" not in self.annotators:
return None
return [t[self.NER] for t in self.data]
def ngrams(self, n=1, uncased=False, filter_fn=None, as_strings=True):
"""Returns a list of all ngrams from length 1 to n.
Args:
n: upper limit of ngram length
uncased: lower cases text
filter_fn: user function that takes in an ngram list and returns
True or False to keep or not keep the ngram
as_string: return the ngram as a string vs list
"""
def _skip(gram):
if not filter_fn:
return False
return filter_fn(gram)
words = self.words(uncased)
ngrams = [
(s, e + 1)
for s in range(len(words))
for e in range(s, min(s + n, len(words)))
if not _skip(words[s : e + 1])
]
# Concatenate into strings
if as_strings:
ngrams = ["{}".format(" ".join(words[s:e])) for (s, e) in ngrams]
return ngrams
def entity_groups(self):
"""Group consecutive entity tokens with the same NER tag."""
entities = self.entities()
if not entities:
return None
non_ent = self.opts.get("non_ent", "O")
groups = []
idx = 0
while idx < len(entities):
ner_tag = entities[idx]
# Check for entity tag
if ner_tag != non_ent:
# Chomp the sequence
start = idx
while idx < len(entities) and entities[idx] == ner_tag:
idx += 1
groups.append((self.slice(start, idx).untokenize(), ner_tag))
else:
idx += 1
return groups
class Tokenizer(object):
"""Base tokenizer class.
Tokenizers implement tokenize, which should return a Tokens class.
"""
def tokenize(self, text):
raise NotImplementedError
def shutdown(self):
pass
def __del__(self):
self.shutdown()
class SimpleTokenizer(Tokenizer):
ALPHA_NUM = r"[\p{L}\p{N}\p{M}]+"
NON_WS = r"[^\p{Z}\p{C}]"
def __init__(self, **kwargs):
"""
Args:
annotators: None or empty set (only tokenizes).
"""
self._regexp = regex.compile(
"(%s)|(%s)" % (self.ALPHA_NUM, self.NON_WS), flags=regex.IGNORECASE + regex.UNICODE + regex.MULTILINE
)
if len(kwargs.get("annotators", {})) > 0:
logger.warning(
"%s only tokenizes! Skipping annotators: %s" % (type(self).__name__, kwargs.get("annotators"))
)
self.annotators = set()
def tokenize(self, text):
data = []
matches = [m for m in self._regexp.finditer(text)]
for i in range(len(matches)):
# Get text
token = matches[i].group()
# Get whitespace
span = matches[i].span()
start_ws = span[0]
if i + 1 < len(matches):
end_ws = matches[i + 1].span()[0]
else:
end_ws = span[1]
# Format data
data.append(
(
token,
text[start_ws:end_ws],
span,
)
)
return Tokens(data, self.annotators)
class SpacyTokenizer(Tokenizer):
def __init__(self, **kwargs):
"""
Args:
annotators: set that can include pos, lemma, and ner.
model: spaCy model to use (either path, or keyword like 'en').
"""
model = kwargs.get("model", "en")
self.annotators = copy.deepcopy(kwargs.get("annotators", set()))
nlp_kwargs = {"parser": False}
if not any([p in self.annotators for p in ["lemma", "pos", "ner"]]):
nlp_kwargs["tagger"] = False
if "ner" not in self.annotators:
nlp_kwargs["entity"] = False
self.nlp = spacy.load(model, **nlp_kwargs)
def tokenize(self, text):
# We don't treat new lines as tokens.
clean_text = text.replace("\n", " ")
tokens = self.nlp.tokenizer(clean_text)
if any([p in self.annotators for p in ["lemma", "pos", "ner"]]):
self.nlp.tagger(tokens)
if "ner" in self.annotators:
self.nlp.entity(tokens)
data = []
for i in range(len(tokens)):
# Get whitespace
start_ws = tokens[i].idx
if i + 1 < len(tokens):
end_ws = tokens[i + 1].idx
else:
end_ws = tokens[i].idx + len(tokens[i].text)
data.append(
(
tokens[i].text,
text[start_ws:end_ws],
(tokens[i].idx, tokens[i].idx + len(tokens[i].text)),
tokens[i].tag_,
tokens[i].lemma_,
tokens[i].ent_type_,
)
)
# Set special option for non-entity tag: '' vs 'O' in spaCy
return Tokens(data, self.annotators, opts={"non_ent": ""})