forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
argument.py
206 lines (182 loc) Β· 9.46 KB
/
argument.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from paddlenlp.trainer import TrainingArguments
from paddlenlp.trainer.trainer_utils import IntervalStrategy
from paddlenlp.utils.log import logger
@dataclass
class TrainingArguments(TrainingArguments):
benchmark: bool = field(default=False, metadata={"help": "Whether runs benchmark"})
# NOTE(gongenlei): new add autotuner_benchmark
autotuner_benchmark: bool = field(
default=False,
metadata={"help": "Weather to run benchmark by autotuner. True for from_scratch and pad_max_length."},
)
def __post_init__(self):
super().__post_init__()
# NOTE(gongenlei): new add autotuner_benchmark
if self.autotuner_benchmark:
self.max_steps = 5
self.do_train = True
self.do_export = False
self.do_predict = False
self.do_eval = False
self.overwrite_output_dir = True
self.load_best_model_at_end = False
self.report_to = []
self.save_strategy = IntervalStrategy.NO
self.evaluation_strategy = IntervalStrategy.NO
@dataclass
class DataArgument:
dataset_name_or_path: str = field(default=None, metadata={"help": "Name or path for dataset"})
task_name: str = field(default=None, metadata={"help": "Additional name to select a more specific task."})
zero_padding: bool = field(default=False, metadata={"help": "Whether to use Zero Padding data stream"})
src_length: int = field(default=1024, metadata={"help": "The maximum length of source(context) tokens."})
max_length: int = field(
default=2048,
metadata={
"help": "The maximum length that model input tokens can have. When Zero Padding is set to True, it's also the maximum length for Zero Padding data stream"
},
)
eval_with_do_generation: bool = field(default=False, metadata={"help": "Whether to do generation for evaluation"})
save_generation_output: bool = field(
default=False,
metadata={"help": "Whether to save generated text to file when eval_with_do_generation set to True."},
)
lazy: bool = field(
default=False,
metadata={
"help": "Weather to return `MapDataset` or an `IterDataset`.True for `IterDataset`. False for `MapDataset`."
},
)
chat_template: str = field(
default=None,
metadata={
"help": "the path of `chat_template.json` file to handle multi-rounds conversation. If is None, it will not use `chat_template.json`; If is equal with `model_name_or_path`, it will use the default loading; If is directory, it will find the `chat_template.json` under the directory; If is file, it will load it."
},
)
# NOTE(gongenlei): deprecated params
task_name_or_path: str = field(
default=None,
metadata={
"help": "@deprecated Please use `dataset_name_or_path`. Name or path for dataset, same as `dataset_name_or_path`."
},
) # Alias for dataset_name_or_path
intokens: bool = field(
default=None,
metadata={
"help": "@deprecated Please use `zero_padding`. Whether to use InTokens data stream, same as `zero_padding`."
},
) # Alias for zero_padding
def __post_init__(self):
if self.task_name_or_path is not None:
logger.warning("`--task_name_or_path` is deprecated, please use `--dataset_name_or_path`.")
self.dataset_name_or_path = self.task_name_or_path
if self.intokens is not None:
logger.warning("`--intokens` is deprecated, please use `--zero_padding`.")
self.zero_padding = self.intokens
@dataclass
class ModelArgument:
model_name_or_path: str = field(
default=None, metadata={"help": "Build-in pretrained model name or the path to local model."}
)
use_flash_attention: bool = field(default=False, metadata={"help": "Whether to use flash attention"})
weight_quantize_algo: str = field(
default=None,
metadata={
"help": "Model weight quantization algorithm including 'nf4', 'fp4','weight_only_int4', 'weight_only_int8'."
},
)
weight_blocksize: int = field(
default=64,
metadata={"help": "Block size for weight quantization(Only available for nf4 or fp4 quant_scale.)."},
)
weight_double_quant: bool = field(
default=False, metadata={"help": "Whether apply double quant(Only available for nf4 or fp4 quant_scale.)."}
)
weight_double_quant_block_size: int = field(
default=256,
metadata={
"help": "Block size for quant_scale of weight quant_scale(Only available for nf4 or fp4 quant_scale.)"
},
)
# LoRA related parameters
lora: bool = field(default=False, metadata={"help": "Whether to use LoRA technique"})
lora_path: str = field(default=None, metadata={"help": "Initialize lora state dict."})
lora_rank: int = field(default=8, metadata={"help": "Lora attention dimension"})
# prefix tuning related parameters
prefix_tuning: bool = field(default=False, metadata={"help": "Whether to use Prefix technique"})
num_prefix_tokens: int = field(default=128, metadata={"help": "Number of prefix tokens"})
from_aistudio: bool = field(default=False, metadata={"help": "Whether to load model from aistudio"})
save_to_aistudio: bool = field(default=False, metadata={"help": "Whether to save model to aistudio"})
aistudio_repo_id: str = field(default=None, metadata={"help": "The id of aistudio repo"})
aistudio_repo_private: bool = field(default=True, metadata={"help": "Whether to create a private repo"})
aistudio_repo_license: str = field(default="Apache License 2.0", metadata={"help": "The license of aistudio repo"})
aistudio_token: str = field(default=None, metadata={"help": "The token of aistudio"})
neftune: bool = field(default=False, metadata={"help": "Whether to apply NEFT"})
neftune_noise_alpha: float = field(default=5.0, metadata={"help": "NEFT noise alpha"})
@dataclass
class QuantArgument:
quant_type: str = field(
default="a8w8",
metadata={"help": "Quantization type. Supported values: a8w8, weight_only_int4, weight_only_int8"},
)
# QAT related parameters
# Not Yet support
do_qat: bool = field(default=False, metadata={"help": "Whether to use QAT technique"})
# PTQ related parameters
do_ptq: bool = field(default=False, metadata={"help": "Whether to use PTQ"})
ptq_step: int = field(default=32, metadata={"help": "Step for PTQ"})
weight_quant_method: str = field(
default="abs_max_channel_wise",
metadata={"help": "Weight quantization method, choosen from ['abs_max_channel_wise', 'groupwise']"},
)
# Pre-quant method Shift related parameters
shift: bool = field(default=False, metadata={"help": "Whether to use Shift"})
shift_all_linears: bool = field(default=False, metadata={"help": "Whether to shift all linears"})
shift_sampler: str = field(
default="ema", metadata={"help": "The name of shift sampler, choosen from ['ema', 'none']"}
)
shift_step: int = field(default=32, metadata={"help": "Sample steps when shift"})
# Pre-quant methos Smooth related parameters
smooth: bool = field(default=False, metadata={"help": "Whether to use Smooth"})
smooth_all_linears: bool = field(default=False, metadata={"help": "Whether to smooth all linears"})
smooth_sampler: str = field(
default="none", metadata={"help": "The name of smooth sampler, choosen from ['multi_step','none']"}
)
smooth_step: int = field(default=32, metadata={"help": "Sample steps when smooth"})
smooth_piecewise_search: bool = field(
default=False, metadata={"help": "The number of piece in piecewise search for smooth strategy."}
)
smooth_k_piece: int = field(default=3, metadata={"help": "Number of pieces for K-search"})
smooth_search_piece: bool = field(default=False, metadata={"help": "Whether search k_piece when piecewise search"})
# GPTQ related parameters
do_gptq: bool = field(default=False, metadata={"help": "Whether to use GPTQ"})
gptq_step: int = field(default=8, metadata={"help": "Step for GPTQ"})
# AWQ related parameters, default for WINT4
do_awq: bool = field(default=False, metadata={"help": "Whether to use AWQ Search"})
auto_clip: bool = field(default=False, metadata={"help": "Whether to use AutoClip from AWQ"})
awq_step: int = field(default=8, metadata={"help": "Step for AWQ Search"})
autoclip_step: int = field(default=8, metadata={"help": "Step for AutoClip"})
@dataclass
class GenerateArgument:
top_k: int = field(
default=1,
metadata={
"help": "The number of highest probability tokens to keep for top-k-filtering in the sampling strategy"
},
)
top_p: float = field(
default=1.0, metadata={"help": "The cumulative probability for top-p-filtering in the sampling strategy."}
)