forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
679 lines (599 loc) Β· 27.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import math
import random
import re
from typing import List, Optional
import numpy as np
import paddle
from tqdm import tqdm
from paddlenlp.utils.log import logger
def set_seed(seed):
paddle.seed(seed)
random.seed(seed)
np.random.seed(seed)
def create_data_loader(dataset, mode="train", batch_size=1, trans_fn=None):
"""
Create dataloader.
Args:
dataset(obj:`paddle.io.Dataset`): Dataset instance.
mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly.
batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch.
trans_fn(obj:`callable`, optional, defaults to `None`): function to convert a data sample to input ids, etc.
Returns:
dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
"""
if trans_fn:
dataset = dataset.map(trans_fn)
shuffle = True if mode == "train" else False
if mode == "train":
sampler = paddle.io.DistributedBatchSampler(dataset=dataset, batch_size=batch_size, shuffle=shuffle)
else:
sampler = paddle.io.BatchSampler(dataset=dataset, batch_size=batch_size, shuffle=shuffle)
dataloader = paddle.io.DataLoader(dataset, batch_sampler=sampler, return_list=True)
return dataloader
def map_offset(ori_offset, offset_mapping):
"""
map ori offset to token offset
"""
for index, span in enumerate(offset_mapping):
if span[0] <= ori_offset < span[1]:
return index
return -1
def reader(data_path, max_seq_len=512):
"""
read json
"""
with open(data_path, "r", encoding="utf-8") as f:
for line in f:
json_line = json.loads(line)
content = json_line["content"].strip()
prompt = json_line["prompt"]
# Model Input is aslike: [CLS] Prompt [SEP] Content [SEP]
# It include three summary tokens.
if max_seq_len <= len(prompt) + 3:
raise ValueError("The value of max_seq_len is too small, please set a larger value")
max_content_len = max_seq_len - len(prompt) - 3
if len(content) <= max_content_len:
yield json_line
else:
result_list = json_line["result_list"]
json_lines = []
accumulate = 0
while True:
cur_result_list = []
for result in result_list:
if result["end"] - result["start"] > max_content_len:
logger.warning(
"result['end'] - result ['start'] exceeds max_content_len, which will result in no valid instance being returned"
)
if (
result["start"] + 1 <= max_content_len < result["end"]
and result["end"] - result["start"] <= max_content_len
):
max_content_len = result["start"]
break
cur_content = content[:max_content_len]
res_content = content[max_content_len:]
while True:
if len(result_list) == 0:
break
elif result_list[0]["end"] <= max_content_len:
if result_list[0]["end"] > 0:
cur_result = result_list.pop(0)
cur_result_list.append(cur_result)
else:
cur_result_list = [result for result in result_list]
break
else:
break
json_line = {"content": cur_content, "result_list": cur_result_list, "prompt": prompt}
json_lines.append(json_line)
for result in result_list:
if result["end"] <= 0:
break
result["start"] -= max_content_len
result["end"] -= max_content_len
accumulate += max_content_len
max_content_len = max_seq_len - len(prompt) - 3
if len(res_content) == 0:
break
elif len(res_content) < max_content_len:
json_line = {"content": res_content, "result_list": result_list, "prompt": prompt}
json_lines.append(json_line)
break
else:
content = res_content
for json_line in json_lines:
yield json_line
def unify_prompt_name(prompt):
# The classification labels are shuffled during finetuning, so they need
# to be unified during evaluation.
if re.search(r"\[.*?\]$", prompt):
prompt_prefix = prompt[: prompt.find("[", 1)]
cls_options = re.search(r"\[.*?\]$", prompt).group()[1:-1].split(",")
cls_options = sorted(list(set(cls_options)))
cls_options = ",".join(cls_options)
prompt = prompt_prefix + "[" + cls_options + "]"
return prompt
return prompt
def get_relation_type_dict(relation_data, schema_lang="ch"):
def compare(a, b, schema_lang="ch"):
if schema_lang == "ch":
a = a[::-1]
b = b[::-1]
res = ""
for i in range(min(len(a), len(b))):
if a[i] == b[i]:
res += a[i]
else:
break
if res == "":
return res
if schema_lang == "ch" and res[::-1][0] == "η":
return res[::-1][1:]
elif schema_lang == "en" and res[-3:] == " of":
return res[:-3]
return ""
relation_type_dict = {}
added_list = []
for i in range(len(relation_data)):
added = False
if relation_data[i][0] not in added_list:
for j in range(i + 1, len(relation_data)):
match = compare(relation_data[i][0], relation_data[j][0], schema_lang=schema_lang)
if match != "":
match = unify_prompt_name(match)
if relation_data[i][0] not in added_list:
added_list.append(relation_data[i][0])
relation_type_dict.setdefault(match, []).append(relation_data[i][1])
added_list.append(relation_data[j][0])
relation_type_dict.setdefault(match, []).append(relation_data[j][1])
added = True
if not added:
added_list.append(relation_data[i][0])
if schema_lang == "ch":
suffix = relation_data[i][0].rsplit("η", 1)[1]
suffix = unify_prompt_name(suffix)
relation_type = suffix
else:
prefix = relation_data[i][0].split(" of ", 1)[0]
prefix = unify_prompt_name(prefix)
relation_type = prefix
relation_type_dict.setdefault(relation_type, []).append(relation_data[i][1])
return relation_type_dict
def add_entity_negative_example(examples, texts, prompts, label_set, negative_ratio):
negative_examples = []
positive_examples = []
with tqdm(total=len(prompts)) as pbar:
for i, prompt in enumerate(prompts):
redundants = list(set(label_set) ^ set(prompt))
redundants.sort()
num_positive = len(examples[i])
if num_positive != 0:
actual_ratio = math.ceil(len(redundants) / num_positive)
else:
# Set num_positive to 1 for text without positive example
num_positive, actual_ratio = 1, 0
if actual_ratio <= negative_ratio or negative_ratio == -1:
idxs = [k for k in range(len(redundants))]
else:
idxs = random.sample(range(0, len(redundants)), negative_ratio * num_positive)
for idx in idxs:
negative_result = {"content": texts[i], "result_list": [], "prompt": redundants[idx]}
negative_examples.append(negative_result)
positive_examples.extend(examples[i])
pbar.update(1)
return positive_examples, negative_examples
def add_relation_negative_example(redundants, text, num_positive, ratio):
added_example = []
rest_example = []
if num_positive != 0:
actual_ratio = math.ceil(len(redundants) / num_positive)
else:
# Set num_positive to 1 for text without positive example
num_positive, actual_ratio = 1, 0
all_idxs = [k for k in range(len(redundants))]
if actual_ratio <= ratio or ratio == -1:
idxs = all_idxs
rest_idxs = []
else:
idxs = random.sample(range(0, len(redundants)), ratio * num_positive)
rest_idxs = list(set(all_idxs) ^ set(idxs))
for idx in idxs:
negative_result = {"content": text, "result_list": [], "prompt": redundants[idx]}
added_example.append(negative_result)
for rest_idx in rest_idxs:
negative_result = {"content": text, "result_list": [], "prompt": redundants[rest_idx]}
rest_example.append(negative_result)
return added_example, rest_example
def add_full_negative_example(examples, texts, relation_prompts, predicate_set, subject_goldens, schema_lang="ch"):
with tqdm(total=len(relation_prompts)) as pbar:
for i, relation_prompt in enumerate(relation_prompts):
negative_sample = []
for subject in subject_goldens[i]:
for predicate in predicate_set:
# The relation prompt is constructed as follows:
# subject + "η" + predicate -> Chinese
# predicate + " of " + subject -> English
if schema_lang == "ch":
prompt = subject + "η" + predicate
else:
prompt = predicate + " of " + subject
if prompt not in relation_prompt:
negative_result = {"content": texts[i], "result_list": [], "prompt": prompt}
negative_sample.append(negative_result)
examples[i].extend(negative_sample)
pbar.update(1)
return examples
def generate_cls_example(text, labels, prompt_prefix, options):
random.shuffle(options)
cls_options = ",".join(options)
prompt = prompt_prefix + "[" + cls_options + "]"
result_list = []
example = {"content": text, "result_list": result_list, "prompt": prompt}
for label in labels:
start = prompt.rfind(label) - len(prompt) - 1
end = start + len(label)
result = {"text": label, "start": start, "end": end}
example["result_list"].append(result)
return example
def convert_cls_examples(raw_examples, prompt_prefix="ζ
ζεΎε", options=["ζ£ε", "θ΄ε"]):
"""
Convert labeled data export from doccano for classification task.
"""
examples = []
logger.info("Converting doccano data...")
with tqdm(total=len(raw_examples)):
for line in raw_examples:
items = json.loads(line)
# Compatible with doccano >= 1.6.2
if "data" in items.keys():
text, labels = items["data"], items["label"]
else:
text, labels = items["text"], items["label"]
example = generate_cls_example(text, labels, prompt_prefix, options)
examples.append(example)
return examples
def convert_ext_examples(
raw_examples,
negative_ratio,
prompt_prefix="ζ
ζεΎε",
options=["ζ£ε", "θ΄ε"],
separator="##",
is_train=True,
schema_lang="ch",
):
"""
Convert labeled data export from doccano for extraction and aspect-level classification task.
"""
def _sep_cls_label(label, separator):
label_list = label.split(separator)
if len(label_list) == 1:
return label_list[0], None
return label_list[0], label_list[1:]
texts = []
entity_examples = []
relation_examples = []
entity_cls_examples = []
entity_prompts = []
relation_prompts = []
entity_label_set = []
entity_name_set = []
predicate_set = []
subject_goldens = []
inverse_relation_list = []
predicate_list = []
logger.info("Converting doccano data...")
with tqdm(total=len(raw_examples)) as pbar:
for line in raw_examples:
items = json.loads(line)
entity_id = 0
if "data" in items.keys():
relation_mode = False
if isinstance(items["label"], dict) and "entities" in items["label"].keys():
relation_mode = True
text = items["data"]
entities = []
relations = []
if not relation_mode:
# Export file in JSONL format which doccano < 1.7.0
# e.g. {"data": "", "label": [ [0, 2, "ORG"], ... ]}
for item in items["label"]:
entity = {"id": entity_id, "start_offset": item[0], "end_offset": item[1], "label": item[2]}
entities.append(entity)
entity_id += 1
else:
# Export file in JSONL format for relation labeling task which doccano < 1.7.0
# e.g. {"data": "", "label": {"relations": [ {"id": 0, "start_offset": 0, "end_offset": 6, "label": "ORG"}, ... ], "entities": [ {"id": 0, "from_id": 0, "to_id": 1, "type": "foundedAt"}, ... ]}}
entities.extend([entity for entity in items["label"]["entities"]])
if "relations" in items["label"].keys():
relations.extend([relation for relation in items["label"]["relations"]])
else:
# Export file in JSONL format which doccano >= 1.7.0
# e.g. {"text": "", "label": [ [0, 2, "ORG"], ... ]}
if "label" in items.keys():
text = items["text"]
entities = []
for item in items["label"]:
entity = {"id": entity_id, "start_offset": item[0], "end_offset": item[1], "label": item[2]}
entities.append(entity)
entity_id += 1
relations = []
else:
# Export file in JSONL (relation) format
# e.g. {"text": "", "relations": [ {"id": 0, "start_offset": 0, "end_offset": 6, "label": "ORG"}, ... ], "entities": [ {"id": 0, "from_id": 0, "to_id": 1, "type": "foundedAt"}, ... ]}
text, relations, entities = items["text"], items["relations"], items["entities"]
texts.append(text)
entity_example = []
entity_prompt = []
entity_example_map = {}
entity_map = {} # id to entity name
for entity in entities:
entity_name = text[entity["start_offset"] : entity["end_offset"]]
entity_map[entity["id"]] = {
"name": entity_name,
"start": entity["start_offset"],
"end": entity["end_offset"],
}
entity_label, entity_cls_label = _sep_cls_label(entity["label"], separator)
# Define the prompt prefix for entity-level classification
# xxx + "η" + ζ
ζεΎε -> Chinese
# Sentiment classification + " of " + xxx -> English
if schema_lang == "ch":
entity_cls_prompt_prefix = entity_name + "η" + prompt_prefix
else:
entity_cls_prompt_prefix = prompt_prefix + " of " + entity_name
if entity_cls_label is not None:
entity_cls_example = generate_cls_example(
text, entity_cls_label, entity_cls_prompt_prefix, options
)
entity_cls_examples.append(entity_cls_example)
result = {"text": entity_name, "start": entity["start_offset"], "end": entity["end_offset"]}
if entity_label not in entity_example_map.keys():
entity_example_map[entity_label] = {
"content": text,
"result_list": [result],
"prompt": entity_label,
}
else:
entity_example_map[entity_label]["result_list"].append(result)
if entity_label not in entity_label_set:
entity_label_set.append(entity_label)
if entity_name not in entity_name_set:
entity_name_set.append(entity_name)
entity_prompt.append(entity_label)
for v in entity_example_map.values():
entity_example.append(v)
entity_examples.append(entity_example)
entity_prompts.append(entity_prompt)
subject_golden = [] # Golden entity inputs
relation_example = []
relation_prompt = []
relation_example_map = {}
inverse_relation = []
predicates = []
for relation in relations:
predicate = relation["type"]
subject_id = relation["from_id"]
object_id = relation["to_id"]
# The relation prompt is constructed as follows:
# subject + "η" + predicate -> Chinese
# predicate + " of " + subject -> English
if schema_lang == "ch":
prompt = entity_map[subject_id]["name"] + "η" + predicate
inverse_negative = entity_map[object_id]["name"] + "η" + predicate
else:
prompt = predicate + " of " + entity_map[subject_id]["name"]
inverse_negative = predicate + " of " + entity_map[object_id]["name"]
if entity_map[subject_id]["name"] not in subject_golden:
subject_golden.append(entity_map[subject_id]["name"])
result = {
"text": entity_map[object_id]["name"],
"start": entity_map[object_id]["start"],
"end": entity_map[object_id]["end"],
}
inverse_relation.append(inverse_negative)
predicates.append(predicate)
if prompt not in relation_example_map.keys():
relation_example_map[prompt] = {"content": text, "result_list": [result], "prompt": prompt}
else:
relation_example_map[prompt]["result_list"].append(result)
if predicate not in predicate_set:
predicate_set.append(predicate)
relation_prompt.append(prompt)
for v in relation_example_map.values():
relation_example.append(v)
relation_examples.append(relation_example)
relation_prompts.append(relation_prompt)
subject_goldens.append(subject_golden)
inverse_relation_list.append(inverse_relation)
predicate_list.append(predicates)
pbar.update(1)
logger.info("Adding negative samples for first stage prompt...")
positive_examples, negative_examples = add_entity_negative_example(
entity_examples, texts, entity_prompts, entity_label_set, negative_ratio
)
if len(positive_examples) == 0:
all_entity_examples = []
else:
all_entity_examples = positive_examples + negative_examples
all_relation_examples = []
if len(predicate_set) != 0:
logger.info("Adding negative samples for second stage prompt...")
if is_train:
positive_examples = []
negative_examples = []
per_n_ratio = negative_ratio // 3
with tqdm(total=len(texts)) as pbar:
for i, text in enumerate(texts):
negative_example = []
collects = []
num_positive = len(relation_examples[i])
# 1. inverse_relation_list
redundants1 = inverse_relation_list[i]
# 2. entity_name_set ^ subject_goldens[i]
redundants2 = []
if len(predicate_list[i]) != 0:
nonentity_list = list(set(entity_name_set) ^ set(subject_goldens[i]))
nonentity_list.sort()
if schema_lang == "ch":
redundants2 = [
nonentity + "η" + predicate_list[i][random.randrange(len(predicate_list[i]))]
for nonentity in nonentity_list
]
else:
redundants2 = [
predicate_list[i][random.randrange(len(predicate_list[i]))] + " of " + nonentity
for nonentity in nonentity_list
]
# 3. entity_label_set ^ entity_prompts[i]
redundants3 = []
if len(subject_goldens[i]) != 0:
non_ent_label_list = list(set(entity_label_set) ^ set(entity_prompts[i]))
non_ent_label_list.sort()
if schema_lang == "ch":
redundants3 = [
subject_goldens[i][random.randrange(len(subject_goldens[i]))] + "η" + non_ent_label
for non_ent_label in non_ent_label_list
]
else:
redundants3 = [
non_ent_label + " of " + subject_goldens[i][random.randrange(len(subject_goldens[i]))]
for non_ent_label in non_ent_label_list
]
redundants_list = [redundants1, redundants2, redundants3]
for redundants in redundants_list:
added, rest = add_relation_negative_example(
redundants,
texts[i],
num_positive,
per_n_ratio,
)
negative_example.extend(added)
collects.extend(rest)
num_sup = num_positive * negative_ratio - len(negative_example)
if num_sup > 0 and collects:
if num_sup > len(collects):
idxs = [k for k in range(len(collects))]
else:
idxs = random.sample(range(0, len(collects)), num_sup)
for idx in idxs:
negative_example.append(collects[idx])
positive_examples.extend(relation_examples[i])
negative_examples.extend(negative_example)
pbar.update(1)
all_relation_examples = positive_examples + negative_examples
else:
relation_examples = add_full_negative_example(
relation_examples, texts, relation_prompts, predicate_set, subject_goldens, schema_lang=schema_lang
)
all_relation_examples = [r for relation_example in relation_examples for r in relation_example]
return all_entity_examples, all_relation_examples, entity_cls_examples
def get_dynamic_max_length(examples, default_max_length: int, dynamic_max_length: List[int]) -> int:
"""get max_length by examples which you can change it by examples in batch"""
cur_length = len(examples[0]["input_ids"])
max_length = default_max_length
for max_length_option in sorted(dynamic_max_length):
if cur_length <= max_length_option:
max_length = max_length_option
break
return max_length
def convert_example(
example, tokenizer, max_seq_len, multilingual=False, dynamic_max_length: Optional[List[int]] = None
):
"""
example: {
title
prompt
content
result_list
}
"""
if dynamic_max_length is not None:
temp_encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
truncation=True,
max_seq_len=max_seq_len,
return_attention_mask=True,
return_position_ids=True,
return_dict=False,
return_offsets_mapping=True,
)
max_length = get_dynamic_max_length(
examples=temp_encoded_inputs, default_max_length=max_seq_len, dynamic_max_length=dynamic_max_length
)
# always pad to max_length
encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
truncation=True,
max_seq_len=max_length,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_position_ids=True,
return_dict=False,
return_offsets_mapping=True,
)
start_ids = [0.0 for x in range(max_length)]
end_ids = [0.0 for x in range(max_length)]
else:
encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
truncation=True,
max_seq_len=max_seq_len,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_position_ids=True,
return_dict=False,
return_offsets_mapping=True,
)
start_ids = [0.0 for x in range(max_seq_len)]
end_ids = [0.0 for x in range(max_seq_len)]
encoded_inputs = encoded_inputs[0]
offset_mapping = [list(x) for x in encoded_inputs["offset_mapping"]]
bias = 0
for index in range(1, len(offset_mapping)):
mapping = offset_mapping[index]
if mapping[0] == 0 and mapping[1] == 0 and bias == 0:
bias = offset_mapping[index - 1][1] + 1 # Includes [SEP] token
if mapping[0] == 0 and mapping[1] == 0:
continue
offset_mapping[index][0] += bias
offset_mapping[index][1] += bias
for item in example["result_list"]:
start = map_offset(item["start"] + bias, offset_mapping)
end = map_offset(item["end"] - 1 + bias, offset_mapping)
start_ids[start] = 1.0
end_ids[end] = 1.0
if multilingual:
tokenized_output = {
"input_ids": encoded_inputs["input_ids"],
"position_ids": encoded_inputs["position_ids"],
"start_positions": start_ids,
"end_positions": end_ids,
}
else:
tokenized_output = {
"input_ids": encoded_inputs["input_ids"],
"token_type_ids": encoded_inputs["token_type_ids"],
"position_ids": encoded_inputs["position_ids"],
"attention_mask": encoded_inputs["attention_mask"],
"start_positions": start_ids,
"end_positions": end_ids,
}
return tokenized_output