Skip to content

ROS/ROS 2 package for Ultralytics YOLOv8 real-time object detection and segmentation. https://github.com/ultralytics/ultralytics

License

Notifications You must be signed in to change notification settings

cyhunblr/ultralytics_ros

Β 
Β 

Repository files navigation

ultralytics_ros

Introduction

ROS/ROS 2 package for real-time object detection and segmentation using the Ultralytics YOLO, enabling flexible integration with various robotics applications.

tracker_node tracker_with_cloud_node
  • The tracker_node provides real-time object detection on incoming ROS/ROS 2 image messages using the Ultralytics YOLO model.
  • The tracker_with_cloud_node provides functionality for 3D object detection by integrating 2D detections, mask image, LiDAR data, and camera information.

Status

ROS distro Industrial CI Docker
ROS Melodic ROS-melodic Industrial CI ROS-melodic Docker Build Check
ROS Noetic ROS-noetic Industrial CI ROS-noetic Docker Build Check
ROS 2 Humble ROS2-humble Industrial CI ROS2-humble Docker Build Check

Setup βš™

ROS Melodic

$ cd ~/{ROS_WORKSPACE}/src
$ GIT_LFS_SKIP_SMUDGE=1 git clone -b melodic-devel https://github.com/Alpaca-zip/ultralytics_ros.git
$ rosdep install -r -y -i --from-paths .
$ pip install pipenv
$ cd ultralytics_ros
$ pipenv install
$ pipenv shell
$ cd ~/{ROS_WORKSPACE} && catkin build

ROS Noetic

$ cd ~/{ROS_WORKSPACE}/src
$ GIT_LFS_SKIP_SMUDGE=1 git clone -b noetic-devel https://github.com/Alpaca-zip/ultralytics_ros.git
$ rosdep install -r -y -i --from-paths .
$ python3 -m pip install -r ultralytics_ros/requirements.txt
$ cd ~/{ROS_WORKSPACE} && catkin build

ROS 2 Humble

$ cd ~/{ROS2_WORKSPACE}/src
$ GIT_LFS_SKIP_SMUDGE=1 git clone -b humble-devel https://github.com/Alpaca-zip/ultralytics_ros.git
$ rosdep install -r -y -i --from-paths .
$ python3 -m pip install -r ultralytics_ros/requirements.txt
$ cd ~/{ROS2_WORKSPACE} && $ colcon build

NOTE: If you want to download KITTI datasets, remove GIT_LFS_SKIP_SMUDGE=1 from the command line.

Run πŸš€

ROS Melodic & ROS Noetic

tracker_node

$ roslaunch ultralytics_ros tracker.launch debug:=true

tracker_node & tracker_with_cloud_node

$ roslaunch ultralytics_ros tracker_with_cloud.launch debug:=true

ROS 2 Humble

tracker_node

$ ros2 launch ultralytics_ros tracker.launch.xml debug:=true

tracker_node & tracker_with_cloud_node

$ ros2 launch ultralytics_ros tracker_with_cloud.launch.xml debug:=true

NOTE: If the 3D bounding box is not displayed correctly, please consider using a lighter yolo model(yolov8n.pt) or increasing the voxel_leaf_size.

tracker_node

Params

  • yolo_model: Pre-trained Weights.
    For yolov8, you can choose yolov8*.pt, yolov8*-seg.pt.

    YOLOv8
    YOLOv8-seg

    See also: https://docs.ultralytics.com/models/

  • input_topic: Topic name for input image.

  • result_topic: Topic name of the custom message containing the 2D bounding box and the mask image.

  • result_image_topic: Topic name of the image on which the detection and segmentation results are plotted.

  • conf_thres: Confidence threshold below which boxes will be filtered out.

  • iou_thres: IoU threshold below which boxes will be filtered out during NMS.

  • max_det: Maximum number of boxes to keep after NMS.

  • tracker: Tracking algorithms.

  • device: Device to run the model on(e.g. cpu or cuda:0).

    <arg name="device" default="cpu"/>
    <arg name="device" default="cuda:0"/>
  • classes: List of class indices to consider.

    <param name="classes" value="0, 1" value-sep=", "/> <!-- person, bicycle -->

    See also: https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco128.yaml

  • result_conf: Whether to plot the detection confidence score.

  • result_line_width: Line width of the bounding boxes.

  • result_font_size: Font size of the text.

  • result_labels: Font to use for the text.

  • result_font: Whether to plot the label of bounding boxes.

  • result_boxes: Whether to plot the bounding boxes.

Topics

  • Subscribed Topics:
  • Published Topics:
    • Plotted images to result_image_topic parameter. (sensor_msgs/Image)
    • Detected objects(2D bounding box, mask image) to result_topic parameter. (ultralytics_ros/YoloResult)
      std_msgs/Header header
      vision_msgs/Detection2DArray detections
      sensor_msgs/Image[] masks
      

tracker_with_cloud_node

Params

  • camera_info_topic: Topic name for camera info.
  • lidar_topic: Topic name for lidar.
  • yolo_result_topic: Topic name of the custom message containing the 2D bounding box and the mask image.
  • yolo_3d_result_topic: Topic name for 3D bounding box.
  • cluster_tolerance: Spatial cluster tolerance as a measure in the L2 Euclidean space.
  • voxel_leaf_size: Voxel size for pointcloud downsampling.
  • min_cluster_size: Minimum number of points that a cluster needs to contain.
  • max_cluster_size: Maximum number of points that a cluster needs to contain.

Topics

  • Subscribed Topics:
    • Camera info from camera_info_topic parameter. (sensor_msgs/CameraInfo)
    • Lidar data from lidar_topic parameter. (sensor_msgs/PointCloud2)
    • Detected objects(2D bounding box, mask image) from yolo_result_topic parameter. (ultralytics_ros/YoloResult)
      std_msgs/Header header
      vision_msgs/Detection2DArray detections
      sensor_msgs/Image[] masks
      
  • Published Topics:

Docker with KITTI datasets 🐳

dockeri.co

Docker Pull & Run

ROS Melodic

$ docker pull alpacazip/ultralytics_ros:melodic
$ docker run -p 6080:80 --shm-size=512m alpacazip/ultralytics_ros:melodic

ROS Noetic

$ docker pull alpacazip/ultralytics_ros:noetic
$ docker run -p 6080:80 --shm-size=512m alpacazip/ultralytics_ros:noetic

ROS 2 Humble

$ docker pull alpacazip/ultralytics_ros:humble
$ docker run -p 6080:80 --shm-size=512m alpacazip/ultralytics_ros:humble

Run tracker_node & tracker_with_cloud_node

ROS Melodic

$ roscd ultralytics_ros && pipenv shell
$ roslaunch ultralytics_ros kitti_predict_with_cloud.launch
$ cd ~/catkin_ws/src/ultralytics_ros/rosbag && rosbag play kitti_2011_09_26_drive_0106_synced.bag --clock --loop

ROS Noetic

$ roslaunch ultralytics_ros kitti_tracker_with_cloud.launch
$ cd ~/catkin_ws/src/ultralytics_ros/rosbag && rosbag play kitti_2011_09_26_drive_0106_synced.bag --clock --loop

ROS 2 Humble

$ ros2 launch ultralytics_ros kitti_tracker_with_cloud.launch.xml
$ cd ~/colcon_ws/src/ultralytics_ros/ros2bag && ros2 bag play kitti_2011_09_26_drive_0106_synced --clock --loop

About

ROS/ROS 2 package for Ultralytics YOLOv8 real-time object detection and segmentation. https://github.com/ultralytics/ultralytics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 66.8%
  • Python 23.7%
  • CMake 5.7%
  • Dockerfile 3.8%