-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodelMC.py
80 lines (57 loc) · 3.59 KB
/
modelMC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
import tensorflow as tf
from keras import initializers
from keras import regularizers
def mc(pretrained_weights=None, input_size=(256, 256, 3)):
inputs = Input(input_size)
paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]]) # only pads dim 2 and 3 (h and w)
[ inputtemp, inputspet,inputsct] = Lambda(tf.split, arguments={'axis': 3, 'num_or_size_splits': 3})(inputs)
inputs_temp = concatenate([inputsct, inputspet], axis=3)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs_temp)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
up5 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(pool4))
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up5)
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
up6 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv5))
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up6)
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv6))
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7)
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv7))
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8)
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
conv9 = Conv2D(4, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
if (pretrained_weights):
model.load_weights(pretrained_weights)
return model
def expand_dim_backend(x,dim):
xe = K.expand_dims(x, dim)
return xe