-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path07_solve_full_coverage_grids.py
144 lines (130 loc) · 3.93 KB
/
07_solve_full_coverage_grids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import datetime
import json
import os.path
import random
import sys
from aemeasure import Measurement, exists
from pcpptc import PolygonInstance
from pcpptc.solver_selection.dmsh import DmshAlgorithm, GmshAlgorithm
# pool = Pool(8)
os.makedirs("./solutions/", exist_ok=True)
def clean_json(path):
if not os.path.exists(path):
return
entries = []
clean = False
with open(path) as f:
data = json.load(f)
for e in data:
if not e:
clean = True
continue
if " object at " in e["solver"]:
print("clean", e, "in", path)
clean = True
continue
entries.append(e)
if clean:
with open(path, "w") as f:
json.dump(entries, f)
def solve(d):
file_path, i = d
print(file_path, i)
start = datetime.datetime.now()
instance = PolygonInstance.from_json(file_path=file_path)
solvers = []
# First round
solvers += [DmshAlgorithm(full_coverage=True, point_based=False, hard_corners=True)]
solvers += [
DmshAlgorithm(
full_coverage=True, point_based=False, hard_corners=True, scale=1.0
)
]
solvers += [
DmshAlgorithm(
full_coverage=True, point_based=False, hard_corners=True, scale=0.9
)
]
solvers += [
GmshAlgorithm(
full_coverage=True, point_based=False, hard_corners=True, alg=i, quad=False
)
for i in [1, 6, 8, 9]
]
solvers += [
GmshAlgorithm(
full_coverage=True,
point_based=False,
hard_corners=True,
alg=i,
quad=False,
scale=0.95,
)
for i in [9]
]
solvers += [
GmshAlgorithm(
full_coverage=True,
point_based=False,
hard_corners=True,
alg=i,
quad=False,
scale=0.9,
)
for i in [9]
]
solvers += [
GmshAlgorithm(
full_coverage=True, point_based=False, hard_corners=True, quad=True, alg=i
)
for i in [8, 9]
]
instance_name = os.path.split(file_path)[-1].split(".")[0]
solution_path = os.path.join("./solutions/", f"{instance_name}.results.json")
clean_json(solution_path)
for i, solver in enumerate(solvers):
if exists(
solution_path, {"instance": instance_name, "solver": solver.identifier()}
):
print("Skip", instance_name, i)
continue
with Measurement(solution_path) as m:
try:
solution = solver(instance)
m["solution"] = solution.to_json(as_string=False)
m["coverage"] = instance.compute_covering_area(solution).area
m["touring_cost"] = instance.compute_touring_cost(solution)
m["length"] = solution.euclidean_length()
m["turn_sum"] = solution.turn_angle_sum()
except AssertionError as ae:
if str(ae) != "Exceeded maximum number of boundary steps.":
raise ae
else:
print(ae)
m["instance"] = instance_name
m["instance_path"] = file_path
m.save_metadata()
m.save_seconds()
m["solver"] = solver.identifier()
m["i"] = i
m["turn_factor"] = instance.turn_cost
time = datetime.datetime.now() - start
print("NEEDED TIME:", i, time)
instance_dir = "../01_grid/instances"
instances = []
i = 0
for f in os.listdir(instance_dir):
if "instance.json" not in f:
continue
f = os.path.join(instance_dir, f)
instances.append((f, i))
i += 1
random.shuffle(instances)
for x in instances:
print(x)
if (
"/77." in x[0]
): # this instance becomes disconnected by the polygon processing. Probably too close holes.
continue
solve(x)
# pool.map(solve, instances)