-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
107 lines (82 loc) · 3.23 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
class Value:
"""A class that stores a single scalar value and its gradient."""
def __init__(self, data, _children=(), _op=''):
"""
Initializes a new Value object.
Args:
data (float): The scalar value.
_children (tuple, optional): Internal variable for autograd graph construction.
_op (str, optional): The operation that produced this node (for debugging and graph visualization).
"""
self.data = data
self.grad = 0
self._backward = lambda: None
self._prev = set(_children)
self._op = _op
def __add__(self, other):
"""Adds two Value objects or a Value object and a scalar."""
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += out.grad
other.grad += out.grad
out._backward = _backward
return out
def __mul__(self, other):
"""Multiplies two Value objects or a Value object and a scalar."""
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __pow__(self, other):
"""Raises a Value object to the power of an int or float."""
assert isinstance(other, (int, float)), "only supporting int/float powers for now"
out = Value(self.data**other, (self,), f'**{other}')
def _backward():
self.grad += (other * self.data**(other-1)) * out.grad
out._backward = _backward
return out
def relu(self):
"""Applies the ReLU (Rectified Linear Unit) activation function."""
out = Value(0 if self.data < 0 else self.data, (self,), 'ReLU')
def _backward():
self.grad += (out.data > 0) * out.grad
out._backward = _backward
return out
def backward(self):
"""Performs backpropagation to compute gradients."""
# Topological order all of the children in the graph
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append(v)
build_topo(self)
# Go one variable at a time and apply the chain rule to get its gradient
self.grad = 1
for v in reversed(topo):
v._backward()
def __neg__(self):
return self * -1
def __radd__(self, other):
return self + other
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return other + (-self)
def __rmul__(self, other):
return self * other
def __truediv__(self, other):
return self * other**-1
def __rtruediv__(self, other):
"""Divides a scalar by a Value object."""
return other * self**-1
def __repr__(self):
"""Returns a string representation of the Value object."""
return f"Value(data={self.data}, grad={self.grad})"