diff --git a/pyntcloud/geometry/__init__.py b/pyntcloud/geometry/__init__.py index 2a25f25..5a951b8 100644 --- a/pyntcloud/geometry/__init__.py +++ b/pyntcloud/geometry/__init__.py @@ -5,3 +5,4 @@ from .models.plane import Plane from .models.sphere import Sphere +from .models.ellipsoid import Ellipsoid diff --git a/pyntcloud/geometry/models/ellipsoid.py b/pyntcloud/geometry/models/ellipsoid.py new file mode 100644 index 0000000..7a8940e --- /dev/null +++ b/pyntcloud/geometry/models/ellipsoid.py @@ -0,0 +1,133 @@ +import numpy as np +import pandas as pd +from .base import GeometryModel + +class Ellipsoid(GeometryModel): + + def __init__(self, center=None, radii=None, evecs=None, evals=None): + self.center = center + self.radii = radii + self.evecs = evecs + self.evals = evals + + def from_k_points(self, points): + ''' + Execute the ellipsoid least squares fit on a subset using + k point of the point cluoud. + To fit the ellispod at leasn k=11 non complanar points are required. + ''' + + self.from_point_cloud(points) + + + def from_point_cloud(self, points): + """ + Least Squares fit. + The code for the fit is from + https://github.com/aleksandrbazhin/ellipsoid_fit_python + + Parameters + ---------- + points: (N, 3) ndarray + """ + x = points[:, 0] + y = points[:, 1] + z = points[:, 2] + + D = np.array([x * x + y * y - 2 * z * z, + x * x + z * z - 2 * y * y, + 2 * x * y, + 2 * x * z, + 2 * y * z, + 2 * x, + 2 * y, + 2 * z, + 1 - 0 * x]) + d2 = np.array(x * x + y * y + z * z).T # rhs for LLSQ + + u = np.linalg.solve(D.dot(D.T), D.dot(d2)) + a = np.array([u[0] + 1 * u[1] - 1]) + b = np.array([u[0] - 2 * u[1] - 1]) + c = np.array([u[1] - 2 * u[0] - 1]) + v = np.concatenate([a, b, c, u[2:]], axis=0).flatten() + A = np.array([[v[0], v[3], v[4], v[6]], + [v[3], v[1], v[5], v[7]], + [v[4], v[5], v[2], v[8]], + [v[6], v[7], v[8], v[9]]]) + + self.center = np.linalg.solve(- A[:3, :3], v[6:9]) + + translation_matrix = np.eye(4) + translation_matrix[3, :3] = self.center.T + + R = translation_matrix.dot(A).dot(translation_matrix.T) + self.A = R + # get the eigenvalues and the RIGHT eigenvectors + self.evals, self.evecs = np.linalg.eig(R[:3, :3] / -R[3, 3]) + # convert the ritght eigenvectors to the LEFT eigenvecors + self.evecs = self.evecs.T + + self.radii = np.sqrt(1. / np.abs(self.evals)) + self.radii *= np.sign(self.evals) + + + def get_projections(self, points, only_distances=False): + ''' + Compute the distances between each point of the point cloud and the ellipsoid surface. + If only_distances=False, it will also project the points onto the ellipsoid surface. + ''' + + # compute the vector jointing the center of the ellipsoid + # and the objective point. Compute also its lenght + vectors = points - self.center + lenghts = np.linalg.norm(vectors, axis=-1) + + # to find the distance between the point and the surface, I have to + # subtract the distance between the origin and the intersection point between + # the ellipsoid surface and the line connecting the point and the center + # To find this point, I will solve the system composed by the line and the + # ellipsoid equation. + # The ellipsoid equation is obtained from the general quadric equation in non-homoegeous corrdinates.s + # The system is solved by substituion, computing the y coordinate that is used + # to found the other two. + # The whole procedure is on the reference system centered on the ellipsoid center + # The whole solution is computed in a reference system with origin at the ellipsoid center. + + centered_points = points - self.center + + # define some scale quantity to compute x, z coordinetes out of the y one + N_x = centered_points[:, 0] / centered_points[:, 1] + N_z = centered_points[:, 2] / centered_points[:, 1] + + # now write the term of the second order equation derived respect to y + + alpha_x = (self.A[0, 0] * N_x + 2 * self.A[0, 1]) * N_x + alpha_z = (self.A[2, 2] * N_z + 2 * self.A[1, 2]) * N_z + alpha_y = 2 * self.A[0, 2] * N_x * N_z + self.A[1, 1] + alpha = alpha_x + alpha_z + alpha_y + + beta = 2 * (self.A[0, 3] * N_x + self.A[2, 3] * N_z + self.A[1, 3]) + gamma = self.A[3, 3] + + # The system has two solutions, I will pick up the positive one + yi = (- beta + np.sqrt(beta ** 2 - 4 * alpha * gamma)) / (2 * alpha) + xi = N_x * yi + zi = N_z * yi + + # organize point coordinates into a single matrix + res_points = np.concatenate([xi[..., np.newaxis], yi[..., np.newaxis], zi[..., np.newaxis]], axis=-1) + + # and so I can compute the required distance (remenìmber that the system is centered at the ellipsoid center) + generalized_radii = np.linalg.norm(res_points, axis=1) + + # so finally the distance between each point of the point cloud and the ellipsoid + # surface reads: + distances = np.abs(lenghts - generalized_radii) + + if only_distances: + return distances + + scales = generalized_radii / lengths + projections = (scales[:, None] * vectors) + self.center + + return distances, projections \ No newline at end of file diff --git a/pyntcloud/ransac/__init__.py b/pyntcloud/ransac/__init__.py index 15e19c2..a2adfc4 100644 --- a/pyntcloud/ransac/__init__.py +++ b/pyntcloud/ransac/__init__.py @@ -4,12 +4,13 @@ """ from .fitters import single_fit -from .models import RansacPlane, RansacSphere +from .models import RansacPlane, RansacSphere, RansacEllipsoid from .samplers import RandomRansacSampler, VoxelgridRansacSampler RANSAC_MODELS = { "plane": RansacPlane, - "sphere": RansacSphere + "sphere": RansacSphere, + "ellipsoid": RansacEllipsoid } RANSAC_SAMPLERS = { "random": RandomRansacSampler, diff --git a/pyntcloud/ransac/models.py b/pyntcloud/ransac/models.py index 59e84ae..5f65ebe 100644 --- a/pyntcloud/ransac/models.py +++ b/pyntcloud/ransac/models.py @@ -1,7 +1,7 @@ import numpy as np from abc import ABC, abstractmethod -from ..geometry import Plane, Sphere +from ..geometry import Plane, Sphere, Ellipsoid class RansacModel(ABC): @@ -55,3 +55,17 @@ def are_valid(self, k_points): return False else: return True + + +class RansacEllipsoid(RansacModel, Ellipsoid): + + def __init__(self, max_dist=1e-4): + super().__init__(max_dist=max_dist) + self.k = 11 + + def are_valid(self, k_points): + # check if points are coplanar + diff = k_points[1:] - k_points[0] + + # if rank is equal or lower than 2, some points are complanar + return np.linalg.matrix_rank(diff) > 2 \ No newline at end of file