forked from modern-fortran/neural-fortran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnf_dense_layer.f90
129 lines (106 loc) · 4.29 KB
/
nf_dense_layer.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
module nf_dense_layer
!! This module provides the concrete dense layer type.
!! It is used internally by the layer type.
!! It is not intended to be used directly by the user.
use nf_activation, only: activation_function
use nf_base_layer, only: base_layer
implicit none
private
public :: dense_layer
type, extends(base_layer) :: dense_layer
!! Concrete implementation of a dense (fully-connected) layer type
integer :: input_size
integer :: output_size
real, allocatable :: weights(:,:)
real, allocatable :: biases(:)
real, allocatable :: z(:) ! matmul(x, w) + b
real, allocatable :: output(:) ! activation(z)
real, allocatable :: gradient(:) ! matmul(w, db)
real, allocatable :: dw(:,:) ! weight gradients
real, allocatable :: db(:) ! bias gradients
class(activation_function), allocatable :: activation
contains
procedure :: backward
procedure :: forward
procedure :: get_gradients
procedure :: get_num_params
procedure :: get_params
procedure :: init
procedure :: set_params
end type dense_layer
interface dense_layer
elemental module function dense_layer_cons(output_size, activation) &
result(res)
!! This function returns the `dense_layer` instance.
integer, intent(in) :: output_size
!! Number of neurons in this layer
class(activation_function), intent(in) :: activation
!! Instance of the activation_function to use;
!! See nf_activation.f90 for available functions.
type(dense_layer) :: res
!! dense_layer instance
end function dense_layer_cons
end interface dense_layer
interface
pure module subroutine backward(self, input, gradient)
!! Apply the backward gradient descent pass.
!! Only weight and bias gradients are updated in this subroutine,
!! while the weights and biases themselves are untouched.
class(dense_layer), intent(in out) :: self
!! Dense layer instance
real, intent(in) :: input(:)
!! Input from the previous layer
real, intent(in) :: gradient(:)
!! Gradient from the next layer
end subroutine backward
pure module subroutine forward(self, input)
!! Propagate forward the layer.
!! Calling this subroutine updates the values of a few data components
!! of `dense_layer` that are needed for the backward pass.
class(dense_layer), intent(in out) :: self
!! Dense layer instance
real, intent(in) :: input(:)
!! Input from the previous layer
end subroutine forward
pure module function get_num_params(self) result(num_params)
!! Return the number of parameters in this layer.
class(dense_layer), intent(in) :: self
!! Dense layer instance
integer :: num_params
!! Number of parameters in this layer
end function get_num_params
pure module function get_params(self) result(params)
!! Return the parameters (weights and biases) of this layer.
!! The parameters are ordered as weights first, biases second.
class(dense_layer), intent(in) :: self
!! Dense layer instance
real, allocatable :: params(:)
!! Parameters of this layer
end function get_params
pure module function get_gradients(self) result(gradients)
!! Return the gradients of this layer.
!! The gradients are ordered as weights first, biases second.
class(dense_layer), intent(in) :: self
!! Dense layer instance
real, allocatable :: gradients(:)
!! Gradients of this layer
end function get_gradients
module subroutine set_params(self, params)
!! Set the parameters of this layer.
!! The parameters are ordered as weights first, biases second.
class(dense_layer), intent(in out) :: self
!! Dense layer instance
real, intent(in) :: params(:)
!! Parameters of this layer
end subroutine set_params
module subroutine init(self, input_shape)
!! Initialize the layer data structures.
!!
!! This is a deferred procedure from the `base_layer` abstract type.
class(dense_layer), intent(in out) :: self
!! Dense layer instance
integer, intent(in) :: input_shape(:)
!! Shape of the input layer
end subroutine init
end interface
end module nf_dense_layer