-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathpull_ozh.py
148 lines (126 loc) · 5.45 KB
/
pull_ozh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import json
import pandas as pd
from datetime import date, timedelta
from configparser import ConfigParser
def get_date_range(dfs):
min_dates = []
for _, df in dfs.items():
min_dates.append(date.fromisoformat(df.index.values.min()))
min_date = min(min_dates)
dates = []
for i in range((date.today() - min_date).days + 1):
dates.append((min_date + timedelta(days=i)).isoformat())
return dates
def main():
parser = ConfigParser()
parser.read("sources.ini")
cantons = list(map(str.upper, parser["cantonal"]))
dfs = {}
last_updated = {}
for canton in cantons:
df = pd.read_csv(parser["cantonal"][canton.lower()])
d = df.iloc[-1]["date"]
t = df.iloc[-1]["time"]
if type(t) == float or type(t) == pd.np.float64:
t = "00:00"
last_updated[canton] = {"Date": d, "Time": t}
dfs[canton] = df.groupby(["date"]).max()
df_last_updated = pd.DataFrame(last_updated).T
df_last_updated.to_csv("last_updated.csv", index_label="Canton")
# Append empty dates to all
dates = get_date_range(dfs)
df_cases = pd.DataFrame(float("nan"), index=dates, columns=cantons)
df_fatalities = pd.DataFrame(float("nan"), index=dates, columns=cantons)
df_hospitalized = pd.DataFrame(float("nan"), index=dates, columns=cantons)
df_icu = pd.DataFrame(float("nan"), index=dates, columns=cantons)
df_vent = pd.DataFrame(float("nan"), index=dates, columns=cantons)
df_released = pd.DataFrame(float("nan"), index=dates, columns=cantons)
for canton, df in dfs.items():
for d in dates:
if d in df.index:
df_cases[canton][d] = df["ncumul_conf"][d]
df_fatalities[canton][d] = df["ncumul_deceased"][d]
df_hospitalized[canton][d] = df["ncumul_hosp"][d]
df_icu[canton][d] = df["ncumul_ICU"][d]
df_vent[canton][d] = df["ncumul_vent"][d]
df_released[canton][d] = df["ncumul_released"][d]
# Fill to calculate the correct totals for CH
df_cases_total = df_cases.fillna(method="ffill")
df_fatalities_total = df_fatalities.fillna(method="ffill")
df_hospitalized_total = df_hospitalized.fillna(method="ffill")
df_icu_total = df_icu.fillna(method="ffill")
df_vent_total = df_vent.fillna(method="ffill")
df_released_total = df_released.fillna(method="ffill")
df_cases["CH"] = df_cases_total.sum(axis=1)
df_fatalities["CH"] = df_fatalities_total.sum(axis=1)
df_hospitalized["CH"] = df_hospitalized_total.sum(axis=1)
df_icu["CH"] = df_icu_total.sum(axis=1)
df_vent["CH"] = df_vent_total.sum(axis=1)
df_released["CH"] = df_released_total.sum(axis=1)
# Create a summery with the most important values in json to allow web devs to grab it
summary = {
"totals": {
"cases": df_cases["CH"][-1],
"fatalities": df_fatalities["CH"][-1],
"hospitalized": df_hospitalized["CH"][-1],
"icu": df_icu["CH"][-1],
"vent": df_vent["CH"][-1],
"released": df_released["CH"][-1],
},
"changes": {
"cases": df_cases["CH"][-1] - df_cases["CH"][-2],
"fatalities": df_fatalities["CH"][-1] - df_fatalities["CH"][-2],
"hospitalized": df_hospitalized["CH"][-1] - df_hospitalized["CH"][-2],
"icu": df_icu["CH"][-1] - df_icu["CH"][-2],
"vent": df_vent["CH"][-1] - df_vent["CH"][-2],
"released": df_released["CH"][-1] - df_released["CH"][-2],
},
"updated_cantons": ",".join(
[
canton
for canton in df_cases
if canton != "CH" and not pd.np.isnan(float(df_cases[canton][-1]))
]
),
}
with open("summary.json", "w") as f:
json.dump(summary, f)
# Store as CSV
df_cases.to_csv("covid19_cases_switzerland_openzh.csv", index_label="Date")
df_fatalities.to_csv(
"covid19_fatalities_switzerland_openzh.csv", index_label="Date"
)
df_hospitalized.to_csv(
"covid19_hospitalized_switzerland_openzh.csv", index_label="Date"
)
df_icu.to_csv("covid19_icu_switzerland_openzh.csv", index_label="Date")
df_vent.to_csv("covid19_vent_switzerland_openzh.csv", index_label="Date")
df_released.to_csv("covid19_released_switzerland_openzh.csv", index_label="Date")
# Store as json
df_cases.to_json("covid19_cases_switzerland_openzh.json")
df_fatalities.to_json("covid19_fatalities_switzerland_openzh.json")
df_hospitalized.to_json("covid19_hospitalized_switzerland_openzh.json")
df_icu.to_json("covid19_icu_switzerland_openzh.json")
df_vent.to_json("covid19_vent_switzerland_openzh.json")
df_released.to_json("covid19_released_switzerland_openzh.json")
with pd.ExcelWriter("covid_19_data_switzerland.xlsx") as writer:
df_cases.to_excel(
writer, index_label="Date", sheet_name="Cases",
)
df_fatalities.to_excel(
writer, index_label="Date", sheet_name="Fatalities",
)
df_hospitalized.to_excel(
writer, index_label="Date", sheet_name="Hospitalized",
)
df_icu.to_excel(
writer, index_label="Date", sheet_name="ICU",
)
df_vent.to_excel(
writer, index_label="Date", sheet_name="Ventilated",
)
df_released.to_excel(
writer, index_label="Date", sheet_name="Released",
)
if __name__ == "__main__":
main()