diff --git a/benchmark/gcp.jl b/benchmark/gcp.jl index cbb3c1d..68e01d0 100644 --- a/benchmark/gcp.jl +++ b/benchmark/gcp.jl @@ -6,14 +6,16 @@ using Distributions const SUITE = BenchmarkGroup() -bench = SUITE["gcp"] = BenchmarkGroup() +BenchmarkTools.DEFAULT_PARAMETERS.seconds = 1 + +bench_gcp = SUITE["gcp"] = BenchmarkGroup() # Benchmark least squares loss for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] - bench["least-squares-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, LeastSquaresLoss()) + bench_gcp["least-squares-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, LeastSquaresLoss()) end # Benchmark Poisson loss @@ -21,7 +23,7 @@ for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(fill(10.0, r), rand.(sz, r)) X = [rand(Poisson(M[I])) for I in CartesianIndices(size(M))] - bench["poisson-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, PoissonLoss()) + bench_gcp["poisson-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, PoissonLoss()) end # Benchmark Gamma loss @@ -30,7 +32,7 @@ for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 M = CPD(ones(r), rand.(sz, r)) k = 1.5 X = [rand(Gamma(k, M[I]/k)) for I in CartesianIndices(size(M))] - bench["gamma-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, GammaLoss()) + bench_gcp["gamma-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, GammaLoss()) end # Benchmark BernoulliOdds Loss @@ -38,5 +40,21 @@ for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [rand(Bernoulli(M[I]/(M[I] + 1))) for I in CartesianIndices(size(M))] - bench["bernoulliOdds-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, BernoulliOddsLoss()) + bench_gcp["bernoulliOdds-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r, BernoulliOddsLoss()) +end + + +# MTTKRP benchmarks +bench_mttkrp = SUITE["mttkrp"] = BenchmarkGroup() + +szs = [10,30,50,80,120,200] +shapes = [(sz, sz, sz) for sz in szs] +n = 1 +rs = 20:20:200 + +for sz in shapes, r in rs + Random.seed!(0) + X = randn(sz) + U = [randn(Ik,r) for Ik in sz] + bench_mttkrp["mttkrp-size(X)=$sz, rank(X)=$r"] = @benchmarkable GCPDecompositions.mttkrp($X, $U, $n) end \ No newline at end of file diff --git a/benchmark/mttkrp.jl b/benchmark/mttkrp.jl deleted file mode 100644 index 2b465a7..0000000 --- a/benchmark/mttkrp.jl +++ /dev/null @@ -1,19 +0,0 @@ -using BenchmarkTools - -using Random -using GCPDecompositions - -const SUITE = BenchmarkGroup() - -bench = SUITE["mttkrp"] = BenchmarkGroup() - -szs = [(15, 20, 25), (30, 40, 50), (60, 70, 80), (80, 90, 100), (100, 110, 120)] -for sz in szs, r in 1:7 - - Random.seed!(0) - X = randn(sz) - U = [randn(Ik,r) for Ik in sz] - n = 1 - - bench["mttkrp-size(X)=$sz, rank(X)=$r"] = @benchmarkable GCPDecompositions.mttkrp($X, $U, $n) -end \ No newline at end of file diff --git a/benchmark/plot_mttkrp.jl b/benchmark/plot_mttkrp.jl index ebc57ef..cdbfa7f 100644 --- a/benchmark/plot_mttkrp.jl +++ b/benchmark/plot_mttkrp.jl @@ -3,25 +3,27 @@ using GCPDecompositions using BenchmarkTools using UnicodePlots -BenchmarkTools.DEFAULT_PARAMETERS.seconds = 1 +# Load benchmark results from benchmark_results.txt +benchmark_results = readresults("benchmark_results.txt") +mttkrp_results = benchmark_results.benchmarkgroup["mttkrp"] -szs = [15, 30, 45, 60, 75, 90] +szs = [10,30,50,80,120,200] shapes = [(sz, sz, sz) for sz in szs] -n = 1 -rs = 1:5 +rs = 20:20:200 results = zeros((size(szs)[1], size(rs)[1])) -for (idx, r) in enumerate(rs) - Random.seed!(0) - Xs = [randn(sz) for sz in shapes]; - Us = [[randn(Ik,r) for Ik in sz] for sz in shapes]; - times = [@belapsed GCPDecompositions.mttkrp($X, $U, $n) for (X,U) in zip(Xs, Us)] - results[:, idx] = times +# Collect results in array where columns are ranks and rows are sizes +for (col_idx, r) in enumerate(rs) + for (row_idx, sz) in enumerate(szs) + # Get median runtime (in milliseconds) + median_time = median(mttkrp_results["mttkrp-size(X)=($sz, $sz, $sz), rank(X)=$r"]).time / 10^6 + results[row_idx, col_idx] = median_time + end end first_r = rs[1] plt = lineplot(szs, results[:, 1], title="MTTKRP runtime vs. size", - xlabel="Size", ylabel="Runtime(s)", name="r = $first_r"); + xlabel="Size", ylabel="Runtime(ms)", name="r = $first_r") for (idx, r) in enumerate(rs[2:end]) lineplot!(plt, szs, results[:, idx + 1], name="r = $r") end