From d45f8a4995c666630735f4ab0a659af305c0c350 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Tue, 10 Oct 2023 18:03:51 +0000 Subject: [PATCH] build based on c9a0178 --- dev/index.html | 2 +- dev/search/index.html | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/dev/index.html b/dev/index.html index 6ea71f6..783a81d 100644 --- a/dev/index.html +++ b/dev/index.html @@ -19,4 +19,4 @@ number = "4", pages = "1066--1095", DOI = "10.1137/19M1266265", -}

Docstrings

GCPDecompositions.GCPDecompositionsModule

Generalized CP Decomposition module. Provides approximate CP tensor decomposition with respect to general losses.

source
GCPDecompositions.CPDType
CPD

Tensor decomposition type for the canonical polyadic decompositions (CPD) of a tensor (i.e., a multi-dimensional array) A.

If F::CPD is the decomposition object, the weights λ and factor matrices U = (U[1],...,U[N]) can be obtained via F.λ and F.U, such that A = Σ_j λ[j] U[1][:,j] ∘ ⋯ ∘ U[N][:,j].

source
GCPDecompositions.gcpFunction
gcp(X::Array, r[, func, grad, lower]) -> CPD

Compute an approximate rank-r CP decomposition of the tensor X with respect to a general loss and return a CPD object.

Inputs

  • X : multi-dimensional tensor/array to approximate/decompose
  • r : number of components for the CPD
  • func : loss function, default = (x, m) -> (m - x)^2
  • grad : loss function derivative, default uses ForwardDiff.jl
  • lower : lower bound for factor matrix entries, default = -Inf
source
+}

Docstrings

GCPDecompositions.GCPDecompositionsModule

Generalized CP Decomposition module. Provides approximate CP tensor decomposition with respect to general losses.

source
GCPDecompositions.CPDType
CPD

Tensor decomposition type for the canonical polyadic decompositions (CPD) of a tensor (i.e., a multi-dimensional array) A.

If F::CPD is the decomposition object, the weights λ and factor matrices U = (U[1],...,U[N]) can be obtained via F.λ and F.U, such that A = Σ_j λ[j] U[1][:,j] ∘ ⋯ ∘ U[N][:,j].

source
GCPDecompositions.gcpFunction
gcp(X::Array, r[, func, grad, lower]) -> CPD

Compute an approximate rank-r CP decomposition of the tensor X with respect to a general loss and return a CPD object.

Inputs

  • X : multi-dimensional tensor/array to approximate/decompose
  • r : number of components for the CPD
  • func : loss function, default = (x, m) -> (m - x)^2
  • grad : loss function derivative, default uses ForwardDiff.jl
  • lower : lower bound for factor matrix entries, default = -Inf
source
diff --git a/dev/search/index.html b/dev/search/index.html index 6f3e7bf..7d1badc 100644 --- a/dev/search/index.html +++ b/dev/search/index.html @@ -1,2 +1,2 @@ -Search · GCPDecompositions.jl

Loading search...

    +Search · GCPDecompositions.jl

    Loading search...