-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
194 lines (150 loc) · 6.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
from pathlib import Path
from typing import Tuple, Any
from datetime import datetime
from functools import partial
import jax
import jax.numpy as jnp
from flax.training import train_state
from flax.training.checkpoints import save_checkpoint
import optax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from tqdm import tqdm
from model import DiffusionModel
def create_output_dir(output_dir: Path) -> Tuple[Path, Path, Path]:
ckpt_dir = output_dir / 'models'
log_dir = output_dir / 'logs'
if not output_dir.exists():
output_dir.mkdir(parents=True)
ckpt_dir.mkdir()
log_dir.mkdir()
return (output_dir, ckpt_dir, log_dir)
def preprocess_image(data, image_size):
image = data['image']
height = tf.shape(image)[0]
width = tf.shape(image)[1]
crop_size = tf.minimum(height, width)
image = tf.image.crop_to_bounding_box(image,
(height - crop_size) // 2,
(width - crop_size) // 2,
crop_size,
crop_size)
# resize and clip
# for image downsampling it is important to turn on antialiasing
image = tf.image.resize(image, size=(image_size, image_size),
antialias=True)
return tf.clip_by_value(image / 255.0, 0.0, 1.0)
def prepare_datasets(image_size: int = 64,
batch_size: int = 64):
dataset_name = 'oxford_flowers102'
split_train = 'train[:80%]+validation[:80%]+test[:80%]'
split_val = 'train[80%:]+validation[80%:]+test[80%:]'
preprocess_fn = partial(preprocess_image, image_size=image_size)
ds_train = tfds.load(dataset_name, split=split_train, shuffle_files=True)\
.map(preprocess_fn, num_parallel_calls=tf.data.AUTOTUNE)\
.cache()\
.shuffle(buffer_size=10*batch_size)\
.batch(batch_size, drop_remainder=True)\
.prefetch(buffer_size=tf.data.AUTOTUNE)
ds_train = tfds.as_numpy(ds_train)
ds_val = tfds.load(dataset_name, split=split_val, shuffle_files=True)\
.map(preprocess_fn, num_parallel_calls=tf.data.AUTOTUNE)\
.cache()\
.batch(batch_size, drop_remainder=True)\
.prefetch(buffer_size=tf.data.AUTOTUNE)
ds_val = tfds.as_numpy(ds_val)
return ds_train, ds_val
class TrainState(train_state.TrainState):
batch_stats: Any
def l1_loss(predictions, targets):
return jnp.abs(predictions - targets)
def kernel_inception_distance():
raise NotImplementedError()
def update_ema(p_cur, p_new, momentum: float = 0.999):
return momentum*p_cur + (1-momentum)*p_new
@jax.jit
def train_step(state, batch, rng):
def loss_fn(params):
outputs, mutated_vars = state.apply_fn(
{'params': params, 'batch_stats': state.batch_stats},
batch, rng, train=True,
mutable=['batch_stats']
)
noises, images, pred_noises, pred_images = outputs
noise_loss = l1_loss(pred_noises, noises).mean()
image_loss = l1_loss(pred_images, images).mean()
loss = noise_loss + image_loss
return loss, mutated_vars
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(loss, mutated_vars), grads = grad_fn(state.params)
state = state.apply_gradients(
grads=grads,
batch_stats=mutated_vars['batch_stats'])
return state, loss
@partial(jax.jit, static_argnums=4)
def evaluate(state, params, rng, batch, diffusion_steps: int):
variables = {'params': params, 'batch_stats': state.batch_stats}
generated_images = state.apply_fn(variables,
rng, batch.shape, diffusion_steps,
method=DiffusionModel.generate)
return generated_images
def run(epochs: int,
image_size: int,
batch_size: int,
learning_rate: float,
weight_decay: float,
val_diffusion_steps: int,
output_dir: Path):
tf.config.experimental.set_visible_devices([], 'GPU')
output_dir, ckpt_dir, log_dir = create_output_dir(output_dir)
summary_writer = tf.summary.create_file_writer(str(log_dir))
rng = jax.random.PRNGKey(0)
rng, key_init, key_diffusion = jax.random.split(rng, 3)
ds_train, _ = prepare_datasets(image_size, batch_size)
image_shape = (batch_size, image_size, image_size, 3)
dummy = jnp.ones(image_shape, dtype=jnp.float32)
model = DiffusionModel()
variables = model.init(key_init, dummy, key_diffusion,
train=True)
state = TrainState.create(
apply_fn=model.apply,
params=variables['params'],
batch_stats=variables['batch_stats'],
tx=optax.adamw(learning_rate, weight_decay=weight_decay)
)
ema_params = state.params.copy(add_or_replace={})
rng, rng_train, rng_val = jax.random.split(rng, 3)
for epoch in range(epochs):
losses = []
pbar = tqdm(ds_train, desc=f'Epoch {epoch}')
for images in pbar:
rng_train, key = jax.random.split(rng_train)
state, loss = train_step(state, images, key)
pbar.set_postfix({'loss': f'{loss:.5f}'})
losses.append(loss)
ema_params = jax.tree_map(update_ema, ema_params, state.params)
generated_images = evaluate(state,
params=ema_params,
rng=rng_val,
batch=dummy,
diffusion_steps=val_diffusion_steps)
with summary_writer.as_default():
tf.summary.scalar('loss', np.mean(losses), step=epoch)
tf.summary.image('generated', generated_images, step=epoch,
max_outputs=8)
save_checkpoint(ckpt_dir, state, step=epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DDIM training')
parser.add_argument('-e', '--epochs', type=int, default=1)
parser.add_argument('--image-size', type=int, default=64)
parser.add_argument('-b', '--batch-size', type=int, default=64)
parser.add_argument('-lr', '--learning-rate', type=float, default=1e-3)
parser.add_argument('--weight-decay', type=float, default=1e-4)
parser.add_argument('--val-diffusion-steps', type=int, default=80)
now = datetime.now().strftime('%Y%m%d-%H%M%S')
parser.add_argument('-o', '--output-dir', type=Path,
default=f'./outputs/{now}')
args = parser.parse_args()
run(**vars(args))