-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcourseplan.html
139 lines (83 loc) · 3.98 KB
/
courseplan.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
layout: page
title: Advanced Tools for Data Analytics
subtitle: Course Plan
use-site-title: true
permalink: courseplan
---
<div class="container-fluid" role="main">
<div class="row">
<div class="container-fluid col">
<p class="post-entry" style="padding:10px">Starting with an elementary introduction to statistics and probability, we will develop various regression, classification, dimensionlity reduction and advanced learning algorithms that are of interest to engineers. In addition, various widely-used machine learning software packages will be introduced. Registrants will solve exercises and receive take-away software code to implement these algorithms. The following is a general outline of the course:</p>
</div>
</div>
<div class="row">
<ol>
<div class="container-fluid col-sm-6">
<b><li class="post-entry">Basics of probability and statistics, underfitting, overfitting and bias-variance tradeoff</b></li><br>
<b><li class="post-entry">Classification Algorithms</b>
<ul>
<li class="post-entry"><i>k</i>-nearest neighbours algorithm</li>
<li class="post-entry"><i>k</i>-means algorithm</li>
<li class="post-entry">Support Vector Machines</li>
<li class="post-entry">Naive Bayes Classifier and Decision Trees</li>
</ul>
</li><br>
<b><li class="post-entry">Regression Algorithms</b>
<ul>
<li class="post-entry">Linear Least Squares</li>
<li class="post-entry">Non-linear Least Squares</li>
<li class="post-entry">Kernel Regression</li>
</ul>
</li><br>
</div>
<div class="container-fluid col-sm-6">
<b><li class="post-entry">
Dimensionality Reduction Algorithms</b>
<ul>
<li class="post-entry">Principal Component Analysis (PCA)</li>
<li class="post-entry">Partial Least Squares (PLS)</li>
<li class="post-entry">Isometric Mapping (ISOMAP)</li>
<li class="post-entry">Local Linear Embedding (LLE)</li>
<li class="post-entry">Canonical Correlation Analysis (CCA)</li>
<li class="post-entry">Multidimensional Scaling (MDS)</li>
</ul>
</li><br>
<b><li class="post-entry">Advanced Learning Algorithms</b>
<ul>
<li class="post-entry">Artificial Neural Networks</li>
<li class="post-entry">Deep Learning</li>
<li class="post-entry">Gaussian Processes</li>
<li class="post-entry">Bayesian Networks</li>
<li class="post-entry">Deep Reinforcement Learning</li>
</ul>
</li><br>
<b><li class="post-entry">Applications in the Process Industry</b></li><br>
</div>
</ol>
</div>
<div class="row">
<div class="container-fluid col-sm-3" style="text-align: center; padding-top: 4pt" id="summarycol">
<h2 class="post-title">Learning Outcomes</h2>
</div>
<div class="container-fluid col-sm-9">
<p class="post-entry">By the end of this workshop, registrants will be able to:
<ul>
<li>identify and solve classification, regression and dimensionality reduction problems</li>
<li>work with softwares such as Python, TensorFlow, and Keras</li>
</ul></p>
</div>
</div>
</div>
<!-- doing something a bit funky here because I want to be careful not to include JQuery twice! -->
<script>
if (typeof jQuery == 'undefined') {
document.write('<script src="/adchem/js/jquery-1.11.2.min.js"></scr' + 'ipt>');
}
</script>
<!-- doing something a bit funky here because I want to be careful not to include JQuery twice! -->
<script src="/adchem/js/bootstrap.min.js"></script>
<!-- doing something a bit funky here because I want to be careful not to include JQuery twice! -->
<script src="/adchem/js/main.js"></script>
</body>
</html>