-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgelsight_driver.py
executable file
·421 lines (323 loc) · 14.7 KB
/
gelsight_driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python
import rospy
import rospkg
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
bridge = CvBridge()
rospack = rospkg.RosPack()
PKG_PATH = rospack.get_path('gelsight_gazebo')
import matplotlib.pyplot as plt
import cv2
import numpy as np
import scipy.ndimage.filters as fi
"""
Utils section
"""
def show_normalized_img(name, img):
draw = img.copy()
draw -= np.min(draw)
draw = draw / np.max(draw)
cv2.imshow(name, draw)
return draw
def gkern2(kernlen=21, nsig=3):
"""Returns a 2D Gaussian kernel array."""
# create nxn zeros
inp = np.zeros((kernlen, kernlen))
# set element at the middle to one, a dirac delta
inp[kernlen // 2, kernlen // 2] = 1
# gaussian-smooth the dirac, resulting in a gaussian filter mask
return fi.gaussian_filter(inp, nsig)
def gaus_noise(image, sigma):
row, col = image.shape
mean = 0
gauss = np.random.normal(mean, sigma, (row, col))
gauss = gauss.reshape(row, col)
noisy = image + gauss
return noisy
def derivative(mat, direction):
assert (direction == 'x' or direction == 'y'), "The derivative direction must be 'x' or 'y'"
kernel = None
if direction == 'x':
kernel = [[-1.0, 0.0, 1.0]]
elif direction == 'y':
kernel = [[-1.0], [0.0], [1.0]]
kernel = np.array(kernel, dtype=np.float64)
return cv2.filter2D(mat, -1, kernel) / 2.0
def tangent(mat):
dx = derivative(mat, 'x')
dy = derivative(mat, 'y')
img_shape = np.shape(mat)
_1 = np.repeat([1.0], img_shape[0] * img_shape[1]).reshape(img_shape).astype(dx.dtype)
unormalized = cv2.merge((-dx, -dy, _1))
norms = np.linalg.norm(unormalized, axis=2)
return (unormalized / np.repeat(norms[:, :, np.newaxis], 3, axis=2))
def solid_color_img(color, size):
image = np.zeros(size + (3,), np.float64)
image[:] = color
return image
def add_overlay(rgb, alpha, color):
s = np.shape(alpha)
opacity3 = np.repeat(alpha, 3).reshape((s[0], s[1], 3)) # * 10.0
overlay = solid_color_img(color, s)
foreground = opacity3 * overlay
background = (1.0 - opacity3) * rgb.astype(np.float64)
res = background + foreground
res[res > 255.0] = 255.0
res[res < 0.0] = 0.0
res = res.astype(np.uint8)
return res
"""
GelSight Simulation
"""
class SimulationApproach:
def __init__(self, **config):
self.light_sources = config['light_sources']
self.background = config['background_img']
self.px2m_ratio = config['px2m_ratio']
self.elastomer_thickness = config['elastomer_thickness']
self.min_depth = config['min_depth']
self.default_ks = 0.15
self.default_kd = 0.5
self.default_alpha = 5
self.ka = config['ka'] or 0.8
self.texture_sigma = config['texture_sigma'] or 0.00001
self.t = config['t'] if 't' in config else 3
self.sigma = config['sigma'] if 'sigma' in config else 7
self.kernel_size = config['sigma'] if 'sigma' in config else 21
self.max_depth = self.min_depth + self.elastomer_thickness
def protrusion_map(self, original, not_in_touch):
protrusion_map = np.copy(original)
protrusion_map[not_in_touch >= self.max_depth] = self.max_depth
return protrusion_map
def segments(self, depth_map):
not_in_touch = np.copy(depth_map)
not_in_touch[not_in_touch < self.max_depth] = 0.0
not_in_touch[not_in_touch >= self.max_depth] = 1.0
in_touch = 1 - not_in_touch
return not_in_touch, in_touch
def internal_shadow(self, elastomer_depth):
elastomer_depth_inv = self.max_depth - elastomer_depth
elastomer_depth_inv = np.interp(elastomer_depth_inv, (0, self.elastomer_thickness), (0.0, 1.0))
return elastomer_depth_inv
def apply_elastic_deformation_v1(self, protrusion_depth, not_in_touch, in_touch):
kernel = gkern2(15, 7)
deformation = self.max_depth - protrusion_depth
for i in range(5):
# # cv2.waitKey(10)
deformation = cv2.filter2D(deformation, -1, kernel)
# # show_normalized_img('deformation', deformation)
# return deformation
return 30 * -deformation * not_in_touch + (protrusion_depth * in_touch)
def apply_elastic_deformation(self, protrusion_depth, not_in_touch, in_touch):
protrusion_depth = - (protrusion_depth - self.max_depth)
kernel = gkern2(self.kernel_size, self.sigma)
deformation = protrusion_depth
deformation2 = protrusion_depth
kernel2 = gkern2(52, 9)
for i in range(self.t):
deformation_ = cv2.filter2D(deformation, -1, kernel)
r = np.max(protrusion_depth) / np.max(deformation_) if np.max(deformation_) > 0 else 1
deformation = np.maximum(r * deformation_, protrusion_depth)
deformation2_ = cv2.filter2D(deformation2, -1, kernel2)
r = np.max(protrusion_depth) / np.max(deformation2_) if np.max(deformation2_) > 0 else 1
deformation2 = np.maximum(r * deformation2_, protrusion_depth)
deformation_v1 = self.apply_elastic_deformation_v1(protrusion_depth, not_in_touch, in_touch)
# deformation2 = protrusion_depth
#
for i in range(self.t):
deformation_ = cv2.filter2D(deformation2, -1, kernel)
r = np.max(protrusion_depth) / np.max(deformation_) if np.max(deformation_) > 0 else 1
deformation2 = np.maximum(r * deformation_, protrusion_depth)
#
# for i in range(3):
# deformation3 = protrusion_depth
# kernel3 = gkern2(21, 7)
# for i in range(3):
# deformation3_ = cv2.filter2D(deformation3, -1, kernel3)
# r = np.max(protrusion_depth) / np.max(deformation3_) if np.max(deformation3_) > 0 else 1
# deformation3 = np.maximum(r * deformation3_, protrusion_depth)
#
# # r = np.max(protrusion_depth) / np.max(deformation) if np.max(deformation) > 0 else 1
# # deformation = np.maximum(r * deformation, protrusion_depth)
# # plt.axis('off')
#
#
# plt.plot(list(range(len(protrusion_depth[150]))), -1 * protrusion_depth[240], color="gray",
# label='Before Smoothing')
# plt.plot(list(range(len(deformation[150]))), -1 * deformation[240], color="limegreen", linestyle='dashed',
# label='Single Gaussian')
# #
# # plt.plot(list(range(len(deformation2[150]))), -1 * deformation[150] + deformation2[150], color='red',
# # linestyle='dashed',
# # label='with ratioxxxxx')
# # deformation_x = -1 * deformation[150] + deformation2[150] - deformation[150]
deformation_x = 2 * deformation - deformation2
#
# plt.plot(list(range(len(deformation[150]))), - deformation_x[240], color="darkorange", linestyle='dashed',
# label='Difference of Gaussians')
# plt.plot(list(range(len(deformation2[150]))), -deformation_v1[150],
# color='black',
# # linestyle='do',
# label='Previous ')
# plt.plot(list(range(len(deformation2[150]))), deformation_x[150],
# color='red',
# linestyle='dashed',
# label='with ratioxxxxx')
# tangent = lambda arr: np.array([abs(arr[i + 1] - arr[i - 1]) / 2 if i > 0 and i < len(arr) - 2 else 0 for i in
# range(len(arr))])
#
# t = tangent(deformation2[150])
# plt.plot(list(range(len(deformation2[240]))),
# deformation[150] + (np.max(deformation2[150]) / np.max(t)) * t,
# color='red',
# label='After Filtering')
# plt.xticks([])
# plt.yticks([])
# plt.legend()
# plt.show()
# plt.clf()
# plt.cla()
#
# cv2.imwrite('protrusion.png', show_normalized_img('protrusion', protrusion_depth) * 255)
# cv2.imwrite('deformation.png', show_normalized_img('deformation', deformation) * 255)
return self.max_depth - deformation_x
def phong_illumination(self, T, source_dir, kd, ks, alpha):
dot = np.dot(T, np.array(source_dir)).astype(np.float64)
difuse_l = dot * kd
difuse_l[difuse_l < 0] = 0.0
dot3 = np.repeat(dot[:, :, np.newaxis], 3, axis=2)
R = 2.0 * dot3 * T - source_dir
V = [0.0, 0.0, 1.0]
spec_l = np.power(np.dot(R, V), alpha) * ks
return difuse_l + spec_l
def generate(self, obj_depth, return_depth=False):
# print('-----------> ', np.shape(obj_depth))
# cv2.imwrite('object_depth.png', obj_depth)
not_in_touch, in_touch = self.segments(obj_depth)
protrusion_depth = self.protrusion_map(obj_depth, not_in_touch)
elastomer_depth = self.apply_elastic_deformation(protrusion_depth, not_in_touch, in_touch)
textured_elastomer_depth = gaus_noise(elastomer_depth, self.texture_sigma)
out = self.ka * self.background
out = add_overlay(out, self.internal_shadow(protrusion_depth), (0.0, 0.0, 0.0))
T = tangent(textured_elastomer_depth / self.px2m_ratio)
# show_normalized_img('tangent', T)
for light in self.light_sources:
ks = light['ks'] if 'ks' in light else self.default_ks
kd = light['kd'] if 'kd' in light else self.default_kd
alpha = light['alpha'] if 'alpha' in light else self.default_alpha
out = add_overlay(out, self.phong_illumination(T, light['position'], kd, ks, alpha), light['color'])
kernel = gkern2(3, 1)
out = cv2.filter2D(out, -1, kernel)
# cv2.imshow('tactile img', out)
# cv2.imwrite('tactile_img.png', out)
#
if return_depth:
return out, elastomer_depth
return out
"""
ROS Driver
"""
class GelSightDriver:
def __init__(self, name, sim_approach):
self.simulation_approach = sim_approach
self.depth_img = None
self.visual_img = None
rospy.init_node(name)
rospy.Subscriber("/gelsight/depth/image_raw", Image, self.on_depth_img)
rospy.Subscriber("/gelsight/image/image_raw", Image, self.on_rgb_img)
self.publisher = rospy.Publisher("/gelsight/tactile_image", Image, queue_size=1)
self.rate = rospy.Rate(30)
def on_depth_img(self, img_msg):
img = bridge.imgmsg_to_cv2(img_msg, desired_encoding="32FC1")
img[np.isnan(img)] = np.inf
self.depth_img = img
def on_rgb_img(self, img_msg):
self.visual_img = bridge.imgmsg_to_cv2(img_msg, desired_encoding="bgr8")
def publish(self, tactile_img):
self.publisher.publish(bridge.cv2_to_imgmsg(tactile_img, "bgr8"))
def run(self):
while not rospy.is_shutdown():
if self.depth_img is None or self.visual_img is None:
continue
tactile_img = self.simulation_approach.generate(self.depth_img)
self.publish(tactile_img)
self.rate.sleep()
cv2.waitKey(1)
def main():
# light position: x,y,z, color BGR
light_sources_mit2014 = [
{'position': [0, 1, 0.25], 'color': (240, 240, 240)},
{'position': [-1, 0, 0.25], 'color': (255, 139, 78)},
{'position': [0, -1, 0.25], 'color': (108, 82, 255)},
{'position': [1, 0, 0.25], 'color': (100, 240, 150)},
]
light_sources_smartlab2014 = [
{'position': [0, 1, 0.25], 'color': (255, 255, 255), 'kd': 0.6, 'ks': 0.5}, # white, top
{'position': [-1, 0, 0.25], 'color': (255, 130, 115), 'kd': 0.5, 'ks': 0.3}, # blue, right
{'position': [0, -1, 0.25], 'color': (108, 82, 255), 'kd': 0.6, 'ks': 0.4}, # red, bottom
{'position': [1, 0, 0.25], 'color': (120, 255, 153), 'kd': 0.1, 'ks': 0.1}, # green, left
]
background_img = cv2.imread(PKG_PATH + '/assets/background.png')
ka = 0.8
px2m_ratio = 5.4347826087e-05
elastomer_thickness = 0.004
min_depth = 0.026 # distance from the image sensor to the rigid glass outer surface
texture_sigma = 0.00001
simulation_approach = SimulationApproach(
light_sources=light_sources_smartlab2014,
background_img=background_img,
ka=ka,
texture_sigma=texture_sigma,
px2m_ratio=px2m_ratio,
elastomer_thickness=elastomer_thickness,
min_depth=min_depth
)
driver = GelSightDriver('gelsight_node', simulation_approach)
driver.run()
def test():
# light position: x,y,z, color BGR
# light_sources_mit2014 = [
# {'position': [0, 1, 0.25], 'color': (240, 240, 240)},
# {'position': [-1, 0, 0.25], 'color': (255, 139, 78)},
# {'position': [0, -1, 0.25], 'color': (108, 82, 255)},
# {'position': [1, 0, 0.25], 'color': (100, 240, 150)},
# ]
light_sources_smartlab2014 = [
# {'position': [0, 1, 0.25], 'color': (255, 255, 255), 'kd': 0.6, 'ks': 0.5}, # white, top
# {'position': [-1, 0, 0.25], 'color': (255, 130, 115), 'kd': 0.5, 'ks': 0.3}, # blue, right
{'position': [-1, 0, 0.25], 'color': (108, 82, 255), 'kd': 0.6, 'ks': 0.4}, # red, bottom
{'position': [0.50, -0.866, 0.25], 'color': (120, 255, 153), 'kd': 0.1, 'ks': 0.4}, # green, left
{'position': [0.50, 0.866, 0.25], 'color': (255, 130, 115), 'kd': 0.1, 'ks': 0.4}, # blue, left
]
# light_sources_mit2017 = [
# {'position': [0, 1, 0.25], 'color': (240, 240, 240)},
# {'position': [-1, 0, 0.25], 'color': (255, 139, 78)},
# {'position': [0, -1, 0.25], 'color': (108, 82, 255)},
# {'position': [1, 0, 0.25], 'color': (100, 240, 150)},
# ]
background_img = cv2.imread(PKG_PATH + '/assets/background_gelsight2017.jpg')
ka = 0.8
px2m_ratio = 5.4347826087e-05
elastomer_thickness = 0.004
min_depth = 0.026 # distance from the image sensor to the rigid glass outer surface
texture_sigma = 0.000002
simulation_approach = SimulationApproach(
light_sources=light_sources_smartlab2014,
background_img=background_img,
ka=ka,
texture_sigma=texture_sigma,
px2m_ratio=px2m_ratio,
elastomer_thickness=elastomer_thickness,
min_depth=min_depth
)
from PIL import Image
# pil_depth = Image.open("/home/danfergo/Projects/gelsight_simulation/dataset/sim/depth2/random__6__-1_-1_5.bmp")
# depth = np.array(pil_depth.getdata()).reshape((640, 480, 3))
# print('---------_> ', cv2.CV_32F1)
depth = np.load("/home/danfergo/Projects/gelsight_simulation/dataset/sim/depth2/random__6__-1_-1_5.npy")
print(np.shape(depth), np.max(depth), np.min(depth), depth.dtype)
out = simulation_approach.generate(depth)
cv2.imshow('test 2017', out)
cv2.waitKey(0)
if __name__ == '__main__':
main()