-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval.py
executable file
·236 lines (190 loc) · 9.18 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.optim as optim
import time
from datetime import datetime
from pathlib import Path
from tensorboardX import SummaryWriter
from data.data_loader import GMDataset, GLDataset, get_dataloader
from GL.displacement_layer import Displacement
from utils.offset_loss import RobustLoss
from utils.permutation_loss import CrossEntropyLoss
from utils.evaluation_metric import matching_accuracy
from parallel import DataParallel
from utils.model_sl import load_model, save_model
from eval import eval_model
from utils.hungarian import hungarian
from utils.config import cfg
def train_eval_model(model,
criterion,
optimizer,
dataloader,
tfboard_writer,
num_epochs=25,
resume=False,
start_epoch=0):
print('Start training...')
since = time.time()
dataset_size = len(dataloader['train'].dataset)
displacement = Displacement()
lap_solver = hungarian
device = next(model.parameters()).device
print('model on device: {}'.format(device))
checkpoint_path = Path(cfg.OUTPUT_PATH) / 'params'
if not checkpoint_path.exists():
checkpoint_path.mkdir(parents=True)
if resume:
assert start_epoch != 0
model_path = str(checkpoint_path / 'params_{:04}.pt'.format(start_epoch))
print('Loading model parameters from {}'.format(model_path))
load_model(model, model_path)
optim_path = str(checkpoint_path / 'optim_{:04}.pt'.format(start_epoch))
print('Loading optimizer state from {}'.format(optim_path))
optimizer.load_state_dict(torch.load(optim_path))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=cfg.TRAIN.LR_STEP,
gamma=cfg.TRAIN.LR_DECAY,
last_epoch=cfg.TRAIN.START_EPOCH - 1)
for epoch in range(start_epoch, num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
model.train() # Set model to training mode
print('lr = ' + ', '.join(['{:.2e}'.format(x['lr']) for x in optimizer.param_groups]))
epoch_loss = 0.0
running_loss = 0.0
running_since = time.time()
iter_num = 0
# Iterate over data.
for inputs in dataloader['train']:
if 'images' in inputs:
data1, data2 = [_.cuda() for _ in inputs['images']]
inp_type = 'img'
elif 'features' in inputs:
data1, data2 = [_.cuda() for _ in inputs['features']]
inp_type = 'feat'
else:
raise ValueError('no valid data key (\'images\' or \'features\') found from dataloader!')
P1_gt, P2_gt = [_.cuda() for _ in inputs['Ps']]
n1_gt, n2_gt = [_.cuda() for _ in inputs['ns']]
if 'es' in inputs:
e1_gt, e2_gt = [_.cuda() for _ in inputs['es']]
G1_gt, G2_gt = [_.cuda() for _ in inputs['Gs']]
H1_gt, H2_gt = [_.cuda() for _ in inputs['Hs']]
KG, KH = [_.cuda() for _ in inputs['Ks']]
perm_mat = inputs['gt_perm_mat'].cuda()
iter_num = iter_num + 1
# zero the parameter gradients
optimizer.zero_grad()
with torch.set_grad_enabled(True):
# forward
if 'es' in inputs:
s_pred, d_pred = \
model(data1, data2, P1_gt, P2_gt, G1_gt, G2_gt, H1_gt, H2_gt, n1_gt, n2_gt, KG, KH, inp_type)
else:
s_pred, d_pred = \
model(data1, data2, P1_gt, P2_gt, n1_gt, n2_gt)
multi_loss = []
if cfg.TRAIN.LOSS_FUNC == 'offset':
d_gt, grad_mask = displacement(perm_mat, P1_gt, P2_gt, n1_gt)
loss = criterion(d_pred, d_gt, grad_mask)
elif cfg.TRAIN.LOSS_FUNC == 'perm':
loss = criterion(s_pred, perm_mat, n1_gt, n2_gt)
else:
raise ValueError('Unknown loss function {}'.format(cfg.TRAIN.LOSS_FUNC))
# backward + optimize
loss.backward()
optimizer.step()
if cfg.MODULE == 'NGM.hypermodel':
tfboard_writer.add_scalars(
'weight',
{'w2': model.module.weight2, 'w3': model.module.weight3},
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
# training accuracy statistic
acc, _, __ = matching_accuracy(lap_solver(s_pred, n1_gt, n2_gt), perm_mat, n1_gt)
# tfboard writer
loss_dict = {'loss_{}'.format(i): l.item() for i, l in enumerate(multi_loss)}
loss_dict['loss'] = loss.item()
tfboard_writer.add_scalars('loss', loss_dict, epoch * cfg.TRAIN.EPOCH_ITERS + iter_num)
accdict = dict()
accdict['matching accuracy'] = acc
tfboard_writer.add_scalars(
'training accuracy',
accdict,
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
# statistics
running_loss += loss.item() * perm_mat.size(0)
epoch_loss += loss.item() * perm_mat.size(0)
if iter_num % cfg.STATISTIC_STEP == 0:
running_speed = cfg.STATISTIC_STEP * perm_mat.size(0) / (time.time() - running_since)
print('Epoch {:<4} Iteration {:<4} {:>4.2f}sample/s Loss={:<8.4f}'
.format(epoch, iter_num, running_speed, running_loss / cfg.STATISTIC_STEP / perm_mat.size(0)))
tfboard_writer.add_scalars(
'speed',
{'speed': running_speed},
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
running_loss = 0.0
running_since = time.time()
epoch_loss = epoch_loss / dataset_size
save_model(model, str(checkpoint_path / 'params_{:04}.pt'.format(epoch + 1)))
torch.save(optimizer.state_dict(), str(checkpoint_path / 'optim_{:04}.pt'.format(epoch + 1)))
print('Epoch {:<4} Loss: {:.4f}'.format(epoch, epoch_loss))
print()
# Eval in each epoch
accs = eval_model(model, dataloader['test'])
acc_dict = {"{}".format(cls): single_acc for cls, single_acc in zip(dataloader['train'].dataset.classes, accs)}
acc_dict['average'] = torch.mean(accs)
tfboard_writer.add_scalars(
'Eval acc',
acc_dict,
(epoch + 1) * cfg.TRAIN.EPOCH_ITERS
)
scheduler.step()
time_elapsed = time.time() - since
print('Training complete in {:.0f}h {:.0f}m {:.0f}s'
.format(time_elapsed // 3600, (time_elapsed // 60) % 60, time_elapsed % 60))
return model
if __name__ == '__main__':
from utils.dup_stdout_manager import DupStdoutFileManager
from utils.parse_args import parse_args
from utils.print_easydict import print_easydict
args = parse_args('Deep learning of graph matching training & evaluation code.')
import importlib
mod = importlib.import_module(cfg.MODULE)
Net = mod.Net
torch.manual_seed(cfg.RANDOM_SEED)
dataset_len = {'train': cfg.TRAIN.EPOCH_ITERS * cfg.BATCH_SIZE, 'test': cfg.EVAL.SAMPLES}
data_fn = GMDataset
if cfg.MODULE == 'GL.model':
data_fn = GLDataset
image_dataset = {
x: data_fn(cfg.DATASET_FULL_NAME,
sets=x,
length=dataset_len[x],
cls=cfg.TRAIN.CLASS if x == 'train' else None,
obj_resize=cfg.PAIR.RESCALE)
for x in ('train', 'test')}
dataloader = {x: get_dataloader(image_dataset[x], fix_seed=(x == 'test'))
for x in ('train', 'test')}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net()
model = model.cuda()
if cfg.TRAIN.LOSS_FUNC == 'offset':
criterion = RobustLoss(norm=cfg.TRAIN.RLOSS_NORM)
elif cfg.TRAIN.LOSS_FUNC == 'perm':
criterion = CrossEntropyLoss()
else:
raise ValueError('Unknown loss function {}'.format(cfg.TRAIN.LOSS_FUNC))
optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.LR, momentum=cfg.TRAIN.MOMENTUM, nesterov=True)
model = DataParallel(model, device_ids=cfg.GPUS)
if not Path(cfg.OUTPUT_PATH).exists():
Path(cfg.OUTPUT_PATH).mkdir(parents=True)
now_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
tfboardwriter = SummaryWriter(logdir=str(Path(cfg.OUTPUT_PATH) / 'tensorboard' / 'training_{}'.format(now_time)))
with DupStdoutFileManager(str(Path(cfg.OUTPUT_PATH) / ('train_log_' + now_time + '.log'))) as _:
print_easydict(cfg)
model = train_eval_model(model, criterion, optimizer, dataloader, tfboardwriter,
num_epochs=cfg.TRAIN.NUM_EPOCHS,
resume=cfg.TRAIN.START_EPOCH != 0,
start_epoch=cfg.TRAIN.START_EPOCH)