-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path11.cpp
332 lines (271 loc) · 9.02 KB
/
11.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include <cassert>
#include <chrono>
#include <cstdint>
#include <iostream>
#include <queue>
#include <unordered_set>
using std::priority_queue;
using std::unordered_set;
enum atom_type {
// part 1
THULIUM,
PLUTONIUM,
STRONTIUM,
PROMETHIUM,
RUTHENIUM,
// part 2
ELERIUM,
DILITHIUM,
// needs to be last enumeration element
NATOMS,
};
enum object_type {
MICROCHIP,
GENERATOR,
NTYPES,
};
static const uint64_t NOBJECTS = (uint64_t)NATOMS * (uint64_t)NTYPES;
static inline uint64_t hash_state(uint64_t el, uint64_t layout) {
return ((el << (NOBJECTS * 3ul)) | layout);
}
static inline uint64_t get_floor(uint64_t layout, uint64_t i) {
return (layout >> (i * 3ul)) & 0b111;
};
static inline uint64_t set_floor(uint64_t layout, uint64_t i, uint64_t floor) {
return (layout & ~(0b111ul << (i * 3ul))) | (floor << (i * 3ul));
};
static inline uint64_t object_id(object_type t, atom_type a) {
return (uint64_t)a + (uint64_t)NATOMS * (uint64_t)t;
}
static uint64_t add_object(uint64_t layout, object_type t, atom_type a,
uint64_t floor) {
return set_floor(layout, object_id(t, a), floor);
}
static uint64_t get_object(uint64_t layout, object_type t, atom_type a) {
return get_floor(layout, object_id(t, a));
}
bool is_valid_layout(uint64_t layout) {
// microchips are at index 0 - NATOMS
for (uint64_t i = 0; i < NATOMS; i++) {
uint64_t floor = get_floor(layout, i);
// ignore everything on floor 0
if (floor == 0) {
continue;
}
// always safe if microchip is coupled to generator of same atom
if (get_floor(layout, i + NATOMS) == floor) {
continue;
}
// unsafe if any other generator on same floor
for (uint64_t j = NATOMS; j < NOBJECTS; j++) {
if (get_floor(layout, j) == floor) {
return false;
}
}
}
return true;
};
struct State {
uint64_t steps;
uint64_t el;
uint64_t layout;
bool operator<(const State& rhs) const {
return steps > rhs.steps || (steps == rhs.steps && el < rhs.el);
};
};
int dijkstra(uint64_t _layout) {
uint64_t ready = 0;
for (uint64_t i = 0; i < NOBJECTS; i++) {
if (get_floor(_layout, i) > 0) {
ready = set_floor(ready, i, 4);
}
}
unordered_set<uint64_t> seen;
priority_queue<State> q;
q.push(State{0, 1, _layout});
// hash of initial state:
while (!q.empty()) {
auto u = q.top();
q.pop();
// check if done
if (u.layout == ready) {
return static_cast<int>(u.steps);
}
if (seen.contains(hash_state(u.el, u.layout))) {
continue;
}
// mark elevator level + layout as seen
// TODO: We can prune MUCH more aggressively here since pairs are interchangable
seen.insert(hash_state(u.el, u.layout));
// generate valid next states
for (uint64_t i = 0; i < NOBJECTS; i++) {
// only consider objects on same floor as elevator
if (get_floor(u.layout, i) != u.el) {
continue;
}
// pair with every other object on this floor
bool movedup = false;
bool moveddown = false;
for (uint64_t j = i + 1; j < NOBJECTS; j++) {
if (get_floor(u.layout, j) != u.el) {
continue;
}
// move objects down
if (u.el > 1) {
uint64_t el = u.el - 1;
uint64_t layout = u.layout;
layout = set_floor(layout, i, el);
layout = set_floor(layout, j, el);
if (is_valid_layout(layout)) {
q.push(State{u.steps + 1, el, layout});
moveddown = true;
}
}
// move objects up
if (u.el < 4) {
uint64_t el = u.el + 1;
uint64_t layout = u.layout;
layout = set_floor(layout, i, el);
layout = set_floor(layout, j, el);
if (is_valid_layout(layout)) {
q.push(State{u.steps + 1, el, layout});
movedup = true;
}
}
}
// move (single) object down
if (!moveddown && u.el > 1) {
uint64_t el = u.el - 1;
uint64_t layout = set_floor(u.layout, i, el);
if (is_valid_layout(layout)) {
q.push(State{u.steps + 1, el, layout});
}
}
// move single object up
if (!movedup && u.el < 4) {
uint64_t el = u.el + 1;
uint64_t layout = set_floor(u.layout, i, el);
if (is_valid_layout(layout)) {
q.push(State{u.steps + 1, el, layout});
}
}
}
}
return -1;
}
void run_tests();
int main() {
auto tstart = std::chrono::high_resolution_clock::now();
int pt1 = 0;
int pt2 = 0;
run_tests();
uint64_t layout = 0;
layout = add_object(layout, GENERATOR, THULIUM, 1);
layout = add_object(layout, MICROCHIP, THULIUM, 1);
layout = add_object(layout, GENERATOR, PLUTONIUM, 1);
layout = add_object(layout, GENERATOR, STRONTIUM, 1);
layout = add_object(layout, MICROCHIP, PLUTONIUM, 2);
layout = add_object(layout, MICROCHIP, STRONTIUM, 2);
layout = add_object(layout, GENERATOR, PROMETHIUM, 3);
layout = add_object(layout, MICROCHIP, PROMETHIUM, 3);
layout = add_object(layout, GENERATOR, RUTHENIUM, 3);
layout = add_object(layout, MICROCHIP, RUTHENIUM, 3);
pt1 = dijkstra(layout);
layout = add_object(layout, GENERATOR, ELERIUM, 1);
layout = add_object(layout, MICROCHIP, ELERIUM, 1);
layout = add_object(layout, GENERATOR, DILITHIUM, 1);
layout = add_object(layout, MICROCHIP, DILITHIUM, 1);
pt2 = dijkstra(layout);
std::cout << "--- Day 11: Radioisotope Thermoelectric Generators ---\n";
std::cout << "Part 1: " << pt1 << "\n";
std::cout << "Part 2: " << pt2 << "\n";
auto tstop = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(tstop - tstart);
std::cout << "Time: " << duration.count() << " μs"
<< "\n";
return EXIT_SUCCESS;
}
void run_tests() {
uint64_t layout = 0;
layout = add_object(layout, MICROCHIP, THULIUM, 1); // HM, idx: 0
layout = add_object(layout, MICROCHIP, STRONTIUM, 1); // LM, idx: 1
layout = add_object(layout, GENERATOR, THULIUM, 2); // HG, idx: 2
layout = add_object(layout, GENERATOR, STRONTIUM, 3); // LG, idx: 3
assert(is_valid_layout(layout) == true);
const auto HM = object_id(MICROCHIP, THULIUM);
const auto LM = object_id(MICROCHIP, STRONTIUM);
const auto HG = object_id(GENERATOR, THULIUM);
const auto LG = object_id(GENERATOR, STRONTIUM);
assert(get_object(layout, MICROCHIP, THULIUM) == 1);
assert(get_object(layout, MICROCHIP, STRONTIUM) == 1);
assert(get_object(layout, GENERATOR, THULIUM) == 2);
assert(get_object(layout, GENERATOR, STRONTIUM) == 3);
assert(get_floor(layout, HM) == 1);
assert(get_floor(layout, LM) == 1);
assert(get_floor(layout, HG) == 2);
assert(get_floor(layout, LG) == 3);
// 1: move HM to floor 2
layout = set_floor(layout, HM, 2);
assert(get_floor(layout, HM) == 2);
assert(is_valid_layout(layout) == true);
// 2: move HM and HG to floor 3
layout = set_floor(layout, HM, 3);
layout = set_floor(layout, HG, 3);
assert(get_floor(layout, HM) == 3);
assert(get_floor(layout, HG) == 3);
assert(is_valid_layout(layout) == true);
// 3: move HM back to floor 2
layout = set_floor(layout, HM, 2);
assert(get_floor(layout, HM) == 2);
assert(is_valid_layout(layout) == true);
// 4: move HM back to floor 1
layout = set_floor(layout, HM, 1);
assert(get_floor(layout, HM) == 1);
assert(is_valid_layout(layout) == true);
// 5: move HM and LM to floor 2
layout = set_floor(layout, HM, 2);
layout = set_floor(layout, LM, 2);
assert(get_floor(layout, HM) == 2);
assert(get_floor(layout, LM) == 2);
assert(is_valid_layout(layout) == true);
// 6: move HM and LM to floor 3
layout = set_floor(layout, HM, 3);
layout = set_floor(layout, LM, 3);
assert(get_floor(layout, HM) == 3);
assert(get_floor(layout, LM) == 3);
assert(is_valid_layout(layout) == true);
// 7: move HM and LM to floor 4
layout = set_floor(layout, HM, 4);
layout = set_floor(layout, LM, 4);
assert(is_valid_layout(layout) == true);
// 8: move HM to floor 3
layout = set_floor(layout, HM, 3);
assert(get_floor(layout, HM) == 3);
assert(is_valid_layout(layout) == true);
// 9: move both generators to floor 4
layout = set_floor(layout, HG, 4);
assert(get_floor(layout, HG) == 4);
layout = set_floor(layout, LG, 4);
assert(get_floor(layout, LG) == 4);
assert(is_valid_layout(layout) == true);
// 10: move LM to floor 3
layout = set_floor(layout, LM, 3);
assert(is_valid_layout(layout) == true);
// 11: HM and LM to floor 4
layout = set_floor(layout, HM, 4);
layout = set_floor(layout, LM, 4);
assert(is_valid_layout(layout) == true);
uint64_t ready = 0;
ready = set_floor(ready, HM, 4);
ready = set_floor(ready, LM, 4);
ready = set_floor(ready, HG, 4);
ready = set_floor(ready, LG, 4);
assert(layout == ready);
layout = 0;
layout = add_object(layout, MICROCHIP, THULIUM, 1);
layout = add_object(layout, MICROCHIP, STRONTIUM, 1);
layout = add_object(layout, GENERATOR, THULIUM, 2);
layout = add_object(layout, GENERATOR, STRONTIUM, 3);
assert(dijkstra(layout) == 11);
}