forked from x4nth055/pythoncode-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pdf_ocr.py
530 lines (479 loc) · 22.8 KB
/
pdf_ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Import Libraries
import os
import re
import argparse
import pytesseract
from pytesseract import Output
import cv2
import numpy as np
import fitz
from io import BytesIO
from PIL import Image
import pandas as pd
import filetype
# Path Of The Tesseract OCR engine
TESSERACT_PATH = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe"
# Include tesseract executable
pytesseract.pytesseract.tesseract_cmd = TESSERACT_PATH
def pix2np(pix):
"""
Converts a pixmap buffer into a numpy array
"""
# pix.samples = sequence of bytes of the image pixels like RGBA
#pix.h = height in pixels
#pix.w = width in pixels
# pix.n = number of components per pixel (depends on the colorspace and alpha)
im = np.frombuffer(pix.samples, dtype=np.uint8).reshape(
pix.h, pix.w, pix.n)
try:
im = np.ascontiguousarray(im[..., [2, 1, 0]]) # RGB To BGR
except IndexError:
# Convert Gray to RGB
im = cv2.cvtColor(im, cv2.COLOR_GRAY2RGB)
im = np.ascontiguousarray(im[..., [2, 1, 0]]) # RGB To BGR
return im
################################################################################
# Image Pre-Processing Functions to improve output accurracy
# Convert to grayscale
def grayscale(img):
return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Remove noise
def remove_noise(img):
return cv2.medianBlur(img, 5)
# Thresholding
def threshold(img):
# return cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
return cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# dilation
def dilate(img):
kernel = np.ones((5, 5), np.uint8)
return cv2.dilate(img, kernel, iterations=1)
# erosion
def erode(img):
kernel = np.ones((5, 5), np.uint8)
return cv2.erode(img, kernel, iterations=1)
# opening -- erosion followed by a dilation
def opening(img):
kernel = np.ones((5, 5), np.uint8)
return cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
# canny edge detection
def canny(img):
return cv2.Canny(img, 100, 200)
# skew correction
def deskew(img):
coords = np.column_stack(np.where(img > 0))
angle = cv2.minAreaRect(coords)[-1]
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
(h, w) = img.shape[:2]
center = (w//2, h//2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(
img, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
return rotated
# template matching
def match_template(img, template):
return cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)
def convert_img2bin(img):
"""
Pre-processes the image and generates a binary output
"""
# Convert the image into a grayscale image
output_img = grayscale(img)
# Invert the grayscale image by flipping pixel values.
# All pixels that are grater than 0 are set to 0 and all pixels that are = to 0 are set to 255
output_img = cv2.bitwise_not(output_img)
# Converting image to binary by Thresholding in order to show a clear separation between white and blacl pixels.
output_img = threshold(output_img)
return output_img
def display_img(title, img):
"""Displays an image on screen and maintains the output until the user presses a key"""
cv2.namedWindow('img', cv2.WINDOW_NORMAL)
cv2.setWindowTitle('img', title)
cv2.resizeWindow('img', 1200, 900)
# Display Image on screen
cv2.imshow('img', img)
# Mantain output until user presses a key
cv2.waitKey(0)
# Destroy windows when user presses a key
cv2.destroyAllWindows()
def generate_ss_text(ss_details):
"""Loops through the captured text of an image and arranges this text line by line.
This function depends on the image layout."""
# Arrange the captured text after scanning the page
parse_text = []
word_list = []
last_word = ''
# Loop through the captured text of the entire page
for word in ss_details['text']:
# If the word captured is not empty
if word != '':
# Add it to the line word list
word_list.append(word)
last_word = word
if (last_word != '' and word == '') or (word == ss_details['text'][-1]):
parse_text.append(word_list)
word_list = []
return parse_text
def search_for_text(ss_details, search_str):
"""Search for the search string within the image content"""
# Find all matches within one page
results = re.findall(search_str, ss_details['text'], re.IGNORECASE)
# In case multiple matches within one page
for result in results:
yield result
def save_page_content(pdfContent, page_id, page_data):
"""Appends the content of a scanned page, line by line, to a pandas DataFrame."""
if page_data:
for idx, line in enumerate(page_data, 1):
line = ' '.join(line)
pdfContent = pdfContent.append(
{'page': page_id, 'line_id': idx, 'line': line}, ignore_index=True
)
return pdfContent
def save_file_content(pdfContent, input_file):
"""Outputs the content of the pandas DataFrame to a CSV file having the same path as the input_file
but with different extension (.csv)"""
content_file = os.path.join(os.path.dirname(input_file), os.path.splitext(
os.path.basename(input_file))[0] + ".csv")
pdfContent.to_csv(content_file, sep=',', index=False)
return content_file
def calculate_ss_confidence(ss_details: dict):
"""Calculate the confidence score of the text grabbed from the scanned image."""
# page_num --> Page number of the detected text or item
# block_num --> Block number of the detected text or item
# par_num --> Paragraph number of the detected text or item
# line_num --> Line number of the detected text or item
# Convert the dict to dataFrame
df = pd.DataFrame.from_dict(ss_details)
# Convert the field conf (confidence) to numeric
df['conf'] = pd.to_numeric(df['conf'], errors='coerce')
# Elliminate records with negative confidence
df = df[df.conf != -1]
# Calculate the mean confidence by page
conf = df.groupby(['page_num'])['conf'].mean().tolist()
return conf[0]
def ocr_img(
img: np.array, input_file: str, search_str: str,
highlight_readable_text: bool = False, action: str = 'Highlight',
show_comparison: bool = False, generate_output: bool = True):
"""Scans an image buffer or an image file.
Pre-processes the image.
Calls the Tesseract engine with pre-defined parameters.
Calculates the confidence score of the image grabbed content.
Draws a green rectangle around readable text items having a confidence score > 30.
Searches for a specific text.
Highlight or redact found matches of the searched text.
Displays a window showing readable text fields or the highlighted or redacted text.
Generates the text content of the image.
Prints a summary to the console."""
# If image source file is inputted as a parameter
if input_file:
# Reading image using opencv
img = cv2.imread(input_file)
# Preserve a copy of this image for comparison purposes
initial_img = img.copy()
highlighted_img = img.copy()
# Convert image to binary
bin_img = convert_img2bin(img)
# Calling Tesseract
# Tesseract Configuration parameters
# oem --> OCR engine mode = 3 >> Legacy + LSTM mode only (LSTM neutral net mode works the best)
# psm --> page segmentation mode = 6 >> Assume as single uniform block of text (How a page of text can be analyzed)
config_param = r'--oem 3 --psm 6'
# Feeding image to tesseract
details = pytesseract.image_to_data(
bin_img, output_type=Output.DICT, config=config_param, lang='eng')
# The details dictionary contains the information of the input image
# such as detected text, region, position, information, height, width, confidence score.
ss_confidence = calculate_ss_confidence(details)
boxed_img = None
# Total readable items
ss_readable_items = 0
# Total matches found
ss_matches = 0
for seq in range(len(details['text'])):
# Consider only text fields with confidence score > 30 (text is readable)
if float(details['conf'][seq]) > 30.0:
ss_readable_items += 1
# Draws a green rectangle around readable text items having a confidence score > 30
if highlight_readable_text:
(x, y, w, h) = (details['left'][seq], details['top']
[seq], details['width'][seq], details['height'][seq])
boxed_img = cv2.rectangle(
img, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Searches for the string
if search_str:
results = re.findall(
search_str, details['text'][seq], re.IGNORECASE)
for result in results:
ss_matches += 1
if action:
# Draw a red rectangle around the searchable text
(x, y, w, h) = (details['left'][seq], details['top']
[seq], details['width'][seq], details['height'][seq])
# Details of the rectangle
# Starting coordinate representing the top left corner of the rectangle
start_point = (x, y)
# Ending coordinate representing the botton right corner of the rectangle
end_point = (x + w, y + h)
#Color in BGR -- Blue, Green, Red
if action == "Highlight":
color = (0, 255, 255) # Yellow
elif action == "Redact":
color = (0, 0, 0) # Black
# Thickness in px (-1 will fill the entire shape)
thickness = -1
boxed_img = cv2.rectangle(
img, start_point, end_point, color, thickness)
if ss_readable_items > 0 and highlight_readable_text and not (ss_matches > 0 and action in ("Highlight", "Redact")):
highlighted_img = boxed_img.copy()
# Highlight found matches of the search string
if ss_matches > 0 and action == "Highlight":
cv2.addWeighted(boxed_img, 0.4, highlighted_img,
1 - 0.4, 0, highlighted_img)
# Redact found matches of the search string
elif ss_matches > 0 and action == "Redact":
highlighted_img = boxed_img.copy()
#cv2.addWeighted(boxed_img, 1, highlighted_img, 0, 0, highlighted_img)
# save the image
cv2.imwrite("highlighted-text-image.jpg", highlighted_img)
# Displays window showing readable text fields or the highlighted or redacted data
if show_comparison and (highlight_readable_text or action):
title = input_file if input_file else 'Compare'
conc_img = cv2.hconcat([initial_img, highlighted_img])
display_img(title, conc_img)
# Generates the text content of the image
output_data = None
if generate_output and details:
output_data = generate_ss_text(details)
# Prints a summary to the console
if input_file:
summary = {
"File": input_file, "Total readable words": ss_readable_items, "Total matches": ss_matches, "Confidence score": ss_confidence
}
# Printing Summary
print("## Summary ########################################################")
print("\n".join("{}:{}".format(i, j) for i, j in summary.items()))
print("###################################################################")
return highlighted_img, ss_readable_items, ss_matches, ss_confidence, output_data
# pass image into pytesseract module
# pytesseract is trained in many languages
#config_param = r'--oem 3 --psm 6'
#details = pytesseract.image_to_data(img,config=config_param,lang='eng')
# print(details)
# return details
def image_to_byte_array(image: Image):
"""
Converts an image into a byte array
"""
imgByteArr = BytesIO()
image.save(imgByteArr, format=image.format if image.format else 'JPEG')
imgByteArr = imgByteArr.getvalue()
return imgByteArr
def ocr_file(**kwargs):
"""Opens the input PDF File.
Opens a memory buffer for storing the output PDF file.
Creates a DataFrame for storing pages statistics
Iterates throughout the chosen pages of the input PDF file
Grabs a screen-shot of the selected PDF page.
Converts the screen-shot pix to a numpy array
Scans the grabbed screen-shot.
Collects the statistics of the screen-shot(page).
Saves the content of the screen-shot(page).
Adds the updated screen-shot (Highlighted, Redacted) to the output file.
Saves the whole content of the PDF file.
Saves the output PDF file if required.
Prints a summary to the console."""
input_file = kwargs.get('input_file')
output_file = kwargs.get('output_file')
search_str = kwargs.get('search_str')
pages = kwargs.get('pages')
highlight_readable_text = kwargs.get('highlight_readable_text')
action = kwargs.get('action')
show_comparison = kwargs.get('show_comparison')
generate_output = kwargs.get('generate_output')
# Opens the input PDF file
pdfIn = fitz.open(input_file)
# Opens a memory buffer for storing the output PDF file.
pdfOut = fitz.open()
# Creates an empty DataFrame for storing pages statistics
dfResult = pd.DataFrame(
columns=['page', 'page_readable_items', 'page_matches', 'page_total_confidence'])
# Creates an empty DataFrame for storing file content
if generate_output:
pdfContent = pd.DataFrame(columns=['page', 'line_id', 'line'])
# Iterate throughout the pages of the input file
for pg in range(pdfIn.pageCount):
if str(pages) != str(None):
if str(pg) not in str(pages):
continue
# Select a page
page = pdfIn[pg]
# Rotation angle
rotate = int(0)
# PDF Page is converted into a whole picture 1056*816 and then for each picture a screenshot is taken.
# zoom = 1.33333333 -----> Image size = 1056*816
# zoom = 2 ---> 2 * Default Resolution (text is clear, image text is hard to read) = filesize small / Image size = 1584*1224
# zoom = 4 ---> 4 * Default Resolution (text is clear, image text is barely readable) = filesize large
# zoom = 8 ---> 8 * Default Resolution (text is clear, image text is readable) = filesize large
zoom_x = 2
zoom_y = 2
# The zoom factor is equal to 2 in order to make text clear
# Pre-rotate is to rotate if needed.
mat = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate)
# To captue a specific part of the PDF page
# rect = page.rect #page size
# mp = rect.tl + (rect.bl - (0.75)/zoom_x) #rectangular area 56 = 75/1.3333
# clip = fitz.Rect(mp,rect.br) #The area to capture
# pix = page.getPixmap(matrix=mat, alpha=False,clip=clip)
# Get a screen-shot of the PDF page
# Colorspace -> represents the color space of the pixmap (csRGB, csGRAY, csCMYK)
# alpha -> Transparancy indicator
pix = page.getPixmap(matrix=mat, alpha=False, colorspace="csGRAY")
# convert the screen-shot pix to numpy array
img = pix2np(pix)
# Erode image to omit or thin the boundaries of the bright area of the image
# We apply Erosion on binary images.
#kernel = np.ones((2,2) , np.uint8)
#img = cv2.erode(img,kernel,iterations=1)
upd_np_array, pg_readable_items, pg_matches, pg_total_confidence, pg_output_data \
= ocr_img(img=img, input_file=None, search_str=search_str, highlight_readable_text=highlight_readable_text # False
, action=action # 'Redact'
, show_comparison=show_comparison # True
, generate_output=generate_output # False
)
# Collects the statistics of the page
dfResult = dfResult.append({'page': (pg+1), 'page_readable_items': pg_readable_items,
'page_matches': pg_matches, 'page_total_confidence': pg_total_confidence}, ignore_index=True)
if generate_output:
pdfContent = save_page_content(
pdfContent=pdfContent, page_id=(pg+1), page_data=pg_output_data)
# Convert the numpy array to image object with mode = RGB
#upd_img = Image.fromarray(np.uint8(upd_np_array)).convert('RGB')
upd_img = Image.fromarray(upd_np_array[..., ::-1])
# Convert the image to byte array
upd_array = image_to_byte_array(upd_img)
# Get Page Size
"""
#To check whether initial page is portrait or landscape
if page.rect.width > page.rect.height:
fmt = fitz.PaperRect("a4-1")
else:
fmt = fitz.PaperRect("a4")
#pno = -1 -> Insert after last page
pageo = pdfOut.newPage(pno = -1, width = fmt.width, height = fmt.height)
"""
pageo = pdfOut.newPage(
pno=-1, width=page.rect.width, height=page.rect.height)
pageo.insertImage(page.rect, stream=upd_array)
#pageo.insertImage(page.rect, stream=upd_img.tobytes())
#pageo.showPDFpage(pageo.rect, pdfDoc, page.number)
content_file = None
if generate_output:
content_file = save_file_content(
pdfContent=pdfContent, input_file=input_file)
summary = {
"File": input_file, "Total pages": pdfIn.pageCount,
"Processed pages": dfResult['page'].count(), "Total readable words": dfResult['page_readable_items'].sum(),
"Total matches": dfResult['page_matches'].sum(), "Confidence score": dfResult['page_total_confidence'].mean(),
"Output file": output_file, "Content file": content_file
}
# Printing Summary
print("## Summary ########################################################")
print("\n".join("{}:{}".format(i, j) for i, j in summary.items()))
print("\nPages Statistics:")
print(dfResult, sep='\n')
print("###################################################################")
pdfIn.close()
if output_file:
pdfOut.save(output_file)
pdfOut.close()
def ocr_folder(**kwargs):
"""Scans all PDF Files within a specified path"""
input_folder = kwargs.get('input_folder')
# Run in recursive mode
recursive = kwargs.get('recursive')
search_str = kwargs.get('search_str')
pages = kwargs.get('pages')
action = kwargs.get('action')
generate_output = kwargs.get('generate_output')
# Loop though the files within the input folder.
for foldername, dirs, filenames in os.walk(input_folder):
for filename in filenames:
# Check if pdf file
if not filename.endswith('.pdf'):
continue
# PDF File found
inp_pdf_file = os.path.join(foldername, filename)
print("Processing file =", inp_pdf_file)
output_file = None
if search_str:
# Generate an output file
output_file = os.path.join(os.path.dirname(
inp_pdf_file), 'ocr_' + os.path.basename(inp_pdf_file))
ocr_file(
input_file=inp_pdf_file, output_file=output_file, search_str=search_str, pages=pages, highlight_readable_text=False, action=action, show_comparison=False, generate_output=generate_output
)
if not recursive:
break
def is_valid_path(path):
"""Validates the path inputted and checks whether it is a file path or a folder path"""
if not path:
raise ValueError(f"Invalid Path")
if os.path.isfile(path):
return path
elif os.path.isdir(path):
return path
else:
raise ValueError(f"Invalid Path {path}")
def parse_args():
"""Get user command line parameters"""
parser = argparse.ArgumentParser(description="Available Options")
parser.add_argument('-i', '--input-path', type=is_valid_path,
required=True, help="Enter the path of the file or the folder to process")
parser.add_argument('-a', '--action', choices=[
'Highlight', 'Redact'], type=str, help="Choose to highlight or to redact")
parser.add_argument('-s', '--search-str', dest='search_str',
type=str, help="Enter a valid search string")
parser.add_argument('-p', '--pages', dest='pages', type=tuple,
help="Enter the pages to consider in the PDF file, e.g. (0,1)")
parser.add_argument("-g", "--generate-output", action="store_true", help="Generate text content in a CSV file")
path = parser.parse_known_args()[0].input_path
if os.path.isfile(path):
parser.add_argument('-o', '--output_file', dest='output_file',
type=str, help="Enter a valid output file")
parser.add_argument("-t", "--highlight-readable-text", action="store_true", help="Highlight readable text in the generated image")
parser.add_argument("-c", "--show-comparison", action="store_true", help="Show comparison between captured image and the generated image")
if os.path.isdir(path):
parser.add_argument("-r", "--recursive", action="store_true", help="Whether to process the directory recursively")
# To Porse The Command Line Arguments
args = vars(parser.parse_args())
# To Display The Command Line Arguments
print("## Command Arguments #################################################")
print("\n".join("{}:{}".format(i, j) for i, j in args.items()))
print("######################################################################")
return args
if __name__ == '__main__':
# Parsing command line arguments entered by user
args = parse_args()
# If File Path
if os.path.isfile(args['input_path']):
# Process a file
if filetype.is_image(args['input_path']):
ocr_img(
# if 'search_str' in (args.keys()) else None
img=None, input_file=args['input_path'], search_str=args['search_str'], highlight_readable_text=args['highlight_readable_text'], action=args['action'], show_comparison=args['show_comparison'], generate_output=args['generate_output']
)
else:
ocr_file(
input_file=args['input_path'], output_file=args['output_file'], search_str=args['search_str'] if 'search_str' in (args.keys()) else None, pages=args['pages'], highlight_readable_text=args['highlight_readable_text'], action=args['action'], show_comparison=args['show_comparison'], generate_output=args['generate_output']
)
# If Folder Path
elif os.path.isdir(args['input_path']):
# Process a folder
ocr_folder(
input_folder=args['input_path'], recursive=args['recursive'], search_str=args['search_str'] if 'search_str' in (args.keys()) else None, pages=args['pages'], action=args['action'], generate_output=args['generate_output']
)