-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_generation.py
346 lines (277 loc) · 12.3 KB
/
benchmark_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import copy
import os.path
import onnx
import pynever.strategies.training as pyn_training
import pynever.strategies.conversion as pyn_conversion
import pynever.datasets as pyn_data
import pynever.networks as pyn_net
import pynever.nodes as pyn_nodes
import numpy as np
import torch.optim as topt
import torch.nn as nn
import logging
import utilities
import torchvision.transforms as transforms
from datetime import datetime
# ===== SET EXPERIMENT ID AND FOLDERS CREATION =====
#
#
#
benchmark_datetime = datetime.now().strftime('%d-%m-%Y_%H:%M:%S')
benchmark_datetime = "27-03-2023_13:59:00"
experiment_folder = f"benchmarks_{benchmark_datetime}/"
onnx_folder = experiment_folder + "onnx_models/"
smtlib_folder = experiment_folder + "smtlib_benchmarks/"
logs_folder = experiment_folder + "logs/"
checkpoint_folder = experiment_folder + "training_checkpoints/"
if not os.path.exists(experiment_folder):
os.mkdir(experiment_folder)
if not os.path.exists(onnx_folder):
os.mkdir(onnx_folder)
if not os.path.exists(smtlib_folder):
os.mkdir(smtlib_folder)
if not os.path.exists(logs_folder):
os.mkdir(logs_folder)
if not os.path.exists(checkpoint_folder):
os.mkdir(checkpoint_folder)
# ===== LOGGERS INSTANTIATION =====
#
#
#
logger_stream = logging.getLogger("pynever.strategies.training")
logger_file = logging.getLogger("benchmark_generation_file")
file_handler = logging.FileHandler(f"{logs_folder}benchmark_gen_logs.txt")
stream_handler = logging.StreamHandler()
file_handler.setLevel(logging.INFO)
stream_handler.setLevel(logging.INFO)
logger_file.addHandler(file_handler)
logger_stream.addHandler(stream_handler)
logger_file.setLevel(logging.INFO)
logger_stream.setLevel(logging.INFO)
#
#
#
# ===== FEATURE EXTRACTORS ARCHITECTURES DEFINITION =====
#
#
#
mnist_feature_extractor_arch = [
(pyn_nodes.ConvNode, [8, (3, 3), (1, 1), (0, 0, 0, 0), (1, 1), 1, True]), # Conv
(pyn_nodes.ReLUNode, []), # ReLU
(pyn_nodes.MaxPoolNode, [(2, 2), (2, 2), (0, 0, 0, 0), (1, 1)]), # MaxPool
(pyn_nodes.ConvNode, [16, (3, 3), (1, 1), (0, 0, 0, 0), (1, 1), 1, True]), # Conv
(pyn_nodes.ReLUNode, []), # ReLU
(pyn_nodes.MaxPoolNode, [(2, 2), (2, 2), (0, 0, 0, 0), (1, 1)]), # MaxPool
(pyn_nodes.ConvNode, [32, (3, 3), (1, 1), (0, 0, 0, 0), (1, 1), 1, True]), # Conv
(pyn_nodes.ReLUNode, []), # ReLU
(pyn_nodes.MaxPoolNode, [(2, 2), (2, 2), (0, 0, 0, 0), (1, 1)]), # MaxPool
(pyn_nodes.FlattenNode, [])
]
#
#
#
# ===== PARAMETERS SELECTION =====
#
#
#
device = "mps"
mnist_benchmark_parameters = {
# DATASET PARAMETERS
"dataset_id": "mnist",
"dataset_folder": "data/",
"in_transform": transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)
]),
# NETWORK PARAMETERS
"feature_ext_arch": mnist_feature_extractor_arch,
"classifier_archs": [[16], [32], [16, 8], [32, 16], [64]],
"classifier_act_funs": [pyn_nodes.ReLUNode, pyn_nodes.SigmoidNode, pyn_nodes.TanhNode],
"input_dimension": (1, 28, 28),
"output_size": 10,
"activation_on_output": False,
# TRAINING PARAMETERS
"validation_percentage": 0.3,
"loss_fn": nn.CrossEntropyLoss(),
"n_epochs": 10,
"train_batch_size": 128,
"validation_batch_size": 64,
"opt_con": topt.Adam,
"opt_params": {"lr": 0.001, "weight_decay": 0},
# TESTING PARAMETERS
"test_batch_size": 1,
"save_results": False,
"metric": pyn_training.PytorchMetrics.inaccuracy,
"metric_params": {},
# PROPERTY PARAMETERS
"epsilons": [0.001, 0.01, 0.1]
}
#
#
#
# ===== EXPERIMENT INSTANCE SETUP =====
#
#
#
benchmarks_parameters = [mnist_benchmark_parameters]
smt_aux_vars = False
logger_file.info(f"benchmark_id,"
f"datetime,"
f"dataset_id,"
f"net_arch,"
f"activation_function,"
f"activation_on_output,"
f"validation_percentage,"
f"loss_fn,"
f"n_epochs,"
f"train_batch_size,"
f"validation_batch_size,"
f"optimizer,"
f"lr,"
f"weight_decay,"
f"test_percentage,"
f"test_batch_size,"
f"metric,"
f"test_metric_results,"
f"epsilon")
#
#
#
# ===== BENCHMARK GENERATION =====
#
#
#
benchmark_num = 0
for benchmark_params in benchmarks_parameters:
# DATASET PARAMETERS
dataset_id = benchmark_params["dataset_id"]
dataset_folder = benchmark_params["dataset_folder"]
transform = benchmark_params["in_transform"]
# NETWORK PARAMETERS
feature_ext_arch = benchmark_params["feature_ext_arch"]
classifier_archs = benchmark_params["classifier_archs"]
classifier_act_funs = benchmark_params["classifier_act_funs"]
input_dimension = benchmark_params["input_dimension"]
output_size = benchmark_params["output_size"]
activation_on_output = benchmark_params["activation_on_output"]
# TRAINING PARAMETERS
validation_percentage = benchmark_params["validation_percentage"]
loss_fn = benchmark_params["loss_fn"]
n_epochs = benchmark_params["n_epochs"]
train_batch_size = benchmark_params["train_batch_size"]
validation_batch_size = benchmark_params["validation_batch_size"]
checkpoint_root = checkpoint_folder
opt_con = benchmark_params["opt_con"]
opt_params = benchmark_params["opt_params"]
# TESTING PARAMETERS
test_batch_size = benchmark_params["test_batch_size"]
save_results = benchmark_params["save_results"]
metric = benchmark_params["metric"]
metric_params = benchmark_params["metric_params"]
# PROPERTY PARAMETERS
epsilons = benchmark_params["epsilons"]
logger_stream.info(f"BENCHMARKS {dataset_id}")
if dataset_id == "mnist":
training_set = pyn_data.TorchMNIST(dataset_folder, True, transform)
test_set = pyn_data.TorchMNIST(dataset_folder, False, transform)
else:
raise NotImplementedError
for act_fun in classifier_act_funs:
input_sample = test_set.__getitem__(0)[0].unsqueeze(0).numpy()
test_len = test_set.__len__()
train_len = training_set.__len__()
test_percentage = test_len / (test_len + train_len)
logger_stream.info(f"Training Dataset Size: {train_len}")
logger_stream.info(f"Test Dataset Size: {test_len}")
logger_stream.info("")
for cls_arch in classifier_archs:
net_id = f"{dataset_id}_{act_fun.__name__}_{cls_arch}"
network = pyn_net.SequentialNetwork(identifier=net_id, input_id="P")
node_index = 0
in_dim = input_dimension
# Adding feature extractor layers to network
for node_con, params in feature_ext_arch:
new_node = node_con(f"{node_con.__name__}_{node_index}", in_dim, *params)
network.add_node(new_node)
in_dim = new_node.out_dim
node_index += 1
# Adding classifier layers to network
for n_neurons in cls_arch:
# FC Layer
new_fc_node = pyn_nodes.FullyConnectedNode(identifier=f"FullyConnectedNode_{node_index}",
in_dim=in_dim, out_features=n_neurons)
network.add_node(new_fc_node)
node_index += 1
# Activation Layer
act_node = act_fun(identifier=f"{act_fun.__name__}_{node_index}", in_dim=new_fc_node.out_dim)
network.add_node(act_node)
in_dim = act_node.out_dim
node_index += 1
# Adding Output Layer to network
fc_out_node = pyn_nodes.FullyConnectedNode(identifier=f"FullyConnectedNode_{node_index}", in_dim=in_dim,
out_features=output_size)
network.add_node(fc_out_node)
node_index += 1
if activation_on_output:
act_out_node = act_fun(identifier=f"{act_fun.__name__}_{node_index}", in_dim=fc_out_node.out_dim)
network.add_node(act_out_node)
train_strategy = pyn_training.PytorchTraining(optimizer_con=opt_con, opt_params=opt_params,
loss_function=loss_fn, n_epochs=n_epochs,
validation_percentage=validation_percentage,
train_batch_size=train_batch_size,
validation_batch_size=validation_batch_size,
checkpoints_root=checkpoint_root, precision_metric=metric,
device="mps")
network = train_strategy.train(network=network, dataset=training_set)
test_strategy = pyn_training.PytorchTesting(metric=metric, metric_params=metric_params,
test_batch_size=test_batch_size,
save_results=save_results)
loss = test_strategy.test(network, test_set)
logger_stream.info(f"Test Loss: {loss}")
if save_results:
outputs = np.array(test_strategy.outputs).squeeze()
targets = np.array(test_strategy.targets).squeeze()
losses = np.array(test_strategy.losses)
logger_stream.info(f"{np.sum(losses)}, {len(targets)}")
# Now we need to extract from the network the trained classifier and feature extractor
fex_net = pyn_net.SequentialNetwork(f"{network.identifier}_fex", "P")
cls_net = pyn_net.SequentialNetwork(f"{network.identifier}_cls", "P")
current_node = network.get_first_node()
is_flatten = False
while current_node is not None:
if not is_flatten:
fex_net.add_node(copy.deepcopy(current_node))
if isinstance(current_node, pyn_nodes.FlattenNode):
is_flatten = True
else:
cls_net.add_node(copy.deepcopy(current_node))
current_node = network.get_next_node(current_node)
logger_stream.info(network.__str__())
logger_stream.info(fex_net.__str__())
logger_stream.info(cls_net.__str__())
cls_input_dim = cls_net.get_first_node().in_dim[0]
# SAVE ONNX MODELS
onnx_net = pyn_conversion.ONNXConverter().from_neural_network(network).onnx_network
onnx.save(onnx_net, onnx_folder + network.identifier + ".onnx")
onnx_cls_net = pyn_conversion.ONNXConverter().from_neural_network(cls_net).onnx_network
onnx.save(onnx_cls_net, onnx_folder + network.identifier + "_cls.onnx")
# GENERATE SMTLIB PROPERTIES
for epsilon in epsilons:
benchmark_id = f"B_{benchmark_num:03d}"
sanified_arch = str(cls_arch).replace(", ", "-")
logger_file.info(
f"{benchmark_id},{benchmark_datetime},{dataset_id},{sanified_arch},{act_fun.__name__},{activation_on_output},"
f"{validation_percentage},"
f"{loss_fn.__class__.__name__},{n_epochs},{train_batch_size},{validation_batch_size},"
f"{opt_con.__name__},{opt_params['lr']},{opt_params['weight_decay']},"
f"{test_percentage},{test_batch_size},{metric.__name__},{loss},{epsilon}")
smtlib_path_cvc = smtlib_folder + f"{benchmark_id}_cvc.smt2"
smtlib_path_mathsat = smtlib_folder + f"{benchmark_id}_mathsat.smt2"
net_property = utilities.generate_advrobustness_property(fex_net, cls_net, input_sample, epsilon)
if smt_aux_vars:
utilities.to_smtlib(cls_net, net_property, smtlib_path_cvc, smt_solver="CVC5")
utilities.to_smtlib(cls_net, net_property, smtlib_path_mathsat, smt_solver="Mathsat")
else:
utilities.to_smtlib_no_aux_var(cls_net, net_property, smtlib_path_cvc, smt_solver="CVC5")
utilities.to_smtlib_no_aux_var(cls_net, net_property, smtlib_path_mathsat, smt_solver="Mathsat")
benchmark_num += 1