-
Notifications
You must be signed in to change notification settings - Fork 17
/
index.js
143 lines (143 loc) · 6.56 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/**
* @preserve
* Copyright 2015 Igor Bezkrovny
* All rights reserved. (MIT Licensed)
*
* ssim.ts - part of Image Quantization Library
*/
/**
* - Original TypeScript implementation:
* https://github.com/igor-bezkrovny/image-quantization/blob/9f62764ac047c3e53accdf1d7e4e424b0ef2fb60/src/quality/ssim.ts
* - Based on Java implementation: https://github.com/rhys-e/structural-similarity
* - For more information see: http://en.wikipedia.org/wiki/Structural_similarity
*/
var ImageSSIM;
(function (ImageSSIM) {
'use strict';
/**
* Grey = 1, GreyAlpha = 2, RGB = 3, RGBAlpha = 4
*/
(function (Channels) {
Channels[Channels["Grey"] = 1] = "Grey";
Channels[Channels["GreyAlpha"] = 2] = "GreyAlpha";
Channels[Channels["RGB"] = 3] = "RGB";
Channels[Channels["RGBAlpha"] = 4] = "RGBAlpha";
})(ImageSSIM.Channels || (ImageSSIM.Channels = {}));
var Channels = ImageSSIM.Channels;
/**
* Entry point.
* @throws new Error('Images have different sizes!')
*/
function compare(image1, image2, windowSize, K1, K2, luminance, bitsPerComponent) {
if (windowSize === void 0) { windowSize = 8; }
if (K1 === void 0) { K1 = 0.01; }
if (K2 === void 0) { K2 = 0.03; }
if (luminance === void 0) { luminance = true; }
if (bitsPerComponent === void 0) { bitsPerComponent = 8; }
if (image1.width !== image2.width || image1.height !== image2.height) {
throw new Error('Images have different sizes!');
}
/* tslint:disable:no-bitwise */
var L = (1 << bitsPerComponent) - 1;
/* tslint:enable:no-bitwise */
var c1 = Math.pow((K1 * L), 2), c2 = Math.pow((K2 * L), 2), numWindows = 0, mssim = 0.0;
var mcs = 0.0;
function iteration(lumaValues1, lumaValues2, averageLumaValue1, averageLumaValue2) {
// calculate variance and covariance
var sigxy, sigsqx, sigsqy;
sigxy = sigsqx = sigsqy = 0.0;
for (var i = 0; i < lumaValues1.length; i++) {
sigsqx += Math.pow((lumaValues1[i] - averageLumaValue1), 2);
sigsqy += Math.pow((lumaValues2[i] - averageLumaValue2), 2);
sigxy += (lumaValues1[i] - averageLumaValue1) * (lumaValues2[i] - averageLumaValue2);
}
var numPixelsInWin = lumaValues1.length - 1;
sigsqx /= numPixelsInWin;
sigsqy /= numPixelsInWin;
sigxy /= numPixelsInWin;
// perform ssim calculation on window
var numerator = (2 * averageLumaValue1 * averageLumaValue2 + c1) * (2 * sigxy + c2);
var denominator = (Math.pow(averageLumaValue1, 2) + Math.pow(averageLumaValue2, 2) + c1) * (sigsqx + sigsqy + c2);
mssim += numerator / denominator;
mcs += (2 * sigxy + c2) / (sigsqx + sigsqy + c2);
numWindows++;
}
// calculate SSIM for each window
Internals._iterate(image1, image2, windowSize, luminance, iteration);
return { ssim: mssim / numWindows, mcs: mcs / numWindows };
}
ImageSSIM.compare = compare;
/**
* Internal functions.
*/
var Internals;
(function (Internals) {
function _iterate(image1, image2, windowSize, luminance, callback) {
var width = image1.width, height = image1.height;
for (var y = 0; y < height; y += windowSize) {
for (var x = 0; x < width; x += windowSize) {
// avoid out-of-width/height
var windowWidth = Math.min(windowSize, width - x), windowHeight = Math.min(windowSize, height - y);
var lumaValues1 = _lumaValuesForWindow(image1, x, y, windowWidth, windowHeight, luminance), lumaValues2 = _lumaValuesForWindow(image2, x, y, windowWidth, windowHeight, luminance), averageLuma1 = _averageLuma(lumaValues1), averageLuma2 = _averageLuma(lumaValues2);
callback(lumaValues1, lumaValues2, averageLuma1, averageLuma2);
}
}
}
Internals._iterate = _iterate;
function _lumaValuesForWindow(image, x, y, width, height, luminance) {
var array = image.data, lumaValues = new Float32Array(new ArrayBuffer(width * height * 4)), counter = 0;
var maxj = y + height;
for (var j = y; j < maxj; j++) {
var offset = j * image.width;
var i = (offset + x) * image.channels;
var maxi = (offset + x + width) * image.channels;
switch (image.channels) {
case 1 /* Grey */:
while (i < maxi) {
// (0.212655 + 0.715158 + 0.072187) === 1
lumaValues[counter++] = array[i++];
}
break;
case 2 /* GreyAlpha */:
while (i < maxi) {
lumaValues[counter++] = array[i++] * (array[i++] / 255);
}
break;
case 3 /* RGB */:
if (luminance) {
while (i < maxi) {
lumaValues[counter++] = (array[i++] * 0.212655 + array[i++] * 0.715158 + array[i++] * 0.072187);
}
}
else {
while (i < maxi) {
lumaValues[counter++] = (array[i++] + array[i++] + array[i++]);
}
}
break;
case 4 /* RGBAlpha */:
if (luminance) {
while (i < maxi) {
lumaValues[counter++] = (array[i++] * 0.212655 + array[i++] * 0.715158 + array[i++] * 0.072187) * (array[i++] / 255);
}
}
else {
while (i < maxi) {
lumaValues[counter++] = (array[i++] + array[i++] + array[i++]) * (array[i++] / 255);
}
}
break;
}
}
return lumaValues;
}
function _averageLuma(lumaValues) {
var sumLuma = 0.0;
for (var i = 0; i < lumaValues.length; i++) {
sumLuma += lumaValues[i];
}
return sumLuma / lumaValues.length;
}
})(Internals || (Internals = {}));
})(ImageSSIM || (ImageSSIM = {}));
module.exports = ImageSSIM;