-
Notifications
You must be signed in to change notification settings - Fork 6
/
confusion_matrix.py
96 lines (75 loc) · 2.63 KB
/
confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*-coding:utf-8-*-
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
from sklearn.utils.multiclass import unique_labels
# translate true y
y = []
with open('./testdata_y.txt') as f:
for line in f:
y.append((line.index('1')-1)//3)
y = np.array(y)
predict_y = np.loadtxt('./predict_result.txt')
labels = ["Safe","CWE-78","CWE-79","CWE-89","CWE-90","CWE-91","CWE-95","CWE-98","CWE-601","CWE-862",]
classes = np.array(labels)
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
# print(cm.sum(axis=1)[:, np.newaxis])
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
# title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
print(cm.sum(axis=1))
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
plot_confusion_matrix(y,predict_y,classes, normalize=True,title="Normalized confusion matrix of TAP")
plt.savefig('tapcmNor.png',dpi=300)
plt.show()
from sklearn.metrics import cohen_kappa_score
kappa = cohen_kappa_score(y,predict_y)
print("Kappa: ",kappa)
from sklearn.metrics import hamming_loss
ham_distance = hamming_loss(y,predict_y)
print("ham_distance: ",ham_distance)
from sklearn.metrics import jaccard_similarity_score
jaccrd_score = jaccard_similarity_score(y,predict_y,normalize = True)
print("jaccrd_score: ",jaccrd_score)