Skip to content

Latest commit

 

History

History
68 lines (53 loc) · 1.94 KB

File metadata and controls

68 lines (53 loc) · 1.94 KB

Databricks OpenAI Integration

The databricks-openai package provides seamless integration of Databricks AI features into OpenAI applications.

Installation

From PyPI

pip install databricks-openai

From Source

pip install git+https://[email protected]/databricks/databricks-ai-bridge.git#subdirectory=integrations/openai

Key Features

  • Vector Search: Store and query vector representations using VectorSearchRetrieverTool.

Getting Started

Use Vector Search on Databricks

# Step 1: call model with VectorSearchRetrieverTool defined
dbvs_tool = VectorSearchRetrieverTool(index_name="catalog.schema.my_index_name")
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {
        "role": "user",
        "content": "Using the Databricks documentation, answer what is Spark?"
    }
]
first_response = client.chat.completions.create(
    model="gpt-4o",
    messages=messages,
    tools=[dbvs_tool.tool]
)

# Step 2: Execute function code – parse the model's response and handle function calls.
tool_call = first_response.choices[0].message.tool_calls[0]
args = json.loads(tool_call.function.arguments)
result = dbvs_tool.execute(query=args["query"])  # For self-managed embeddings, optionally pass in openai_client=client

# Step 3: Supply model with results – so it can incorporate them into its final response.
messages.append(first_response.choices[0].message)
messages.append({
    "role": "tool",
    "tool_call_id": tool_call.id,
    "content": json.dumps(result)
})
second_response = client.chat.completions.create(
    model="gpt-4o",
    messages=messages,
    tools=tools
)

Contribution Guide

We welcome contributions! Please see our contribution guidelines for details.

License

This project is licensed under the MIT License.

Thank you for using Databricks OpenAI!