The databricks-openai
package provides seamless integration of Databricks AI features into OpenAI applications.
pip install databricks-openai
pip install git+https://[email protected]/databricks/databricks-ai-bridge.git#subdirectory=integrations/openai
- Vector Search: Store and query vector representations using
VectorSearchRetrieverTool
.
# Step 1: call model with VectorSearchRetrieverTool defined
dbvs_tool = VectorSearchRetrieverTool(index_name="catalog.schema.my_index_name")
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Using the Databricks documentation, answer what is Spark?"
}
]
first_response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=[dbvs_tool.tool]
)
# Step 2: Execute function code – parse the model's response and handle function calls.
tool_call = first_response.choices[0].message.tool_calls[0]
args = json.loads(tool_call.function.arguments)
result = dbvs_tool.execute(query=args["query"]) # For self-managed embeddings, optionally pass in openai_client=client
# Step 3: Supply model with results – so it can incorporate them into its final response.
messages.append(first_response.choices[0].message)
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": json.dumps(result)
})
second_response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools
)
We welcome contributions! Please see our contribution guidelines for details.
This project is licensed under the MIT License.
Thank you for using Databricks OpenAI!