From ef765b1c8eb328758338f3a134175eac8d91fadf Mon Sep 17 00:00:00 2001 From: leonbi100 Date: Fri, 20 Dec 2024 14:06:48 -0500 Subject: [PATCH] Remove endpoint arg from tests --- .../tests/unit_tests/test_vector_search_retriever_tool.py | 5 ----- 1 file changed, 5 deletions(-) diff --git a/integrations/langchain/tests/unit_tests/test_vector_search_retriever_tool.py b/integrations/langchain/tests/unit_tests/test_vector_search_retriever_tool.py index 7fc422e..5868da6 100644 --- a/integrations/langchain/tests/unit_tests/test_vector_search_retriever_tool.py +++ b/integrations/langchain/tests/unit_tests/test_vector_search_retriever_tool.py @@ -22,7 +22,6 @@ def init_vector_search_tool( tool_description: Optional[str] = None, embedding: Optional[Embeddings] = None, text_column: Optional[str] = None, - endpoint: Optional[str] = None, ) -> VectorSearchRetrieverTool: kwargs: Dict[str, Any] = { "index_name": index_name, @@ -31,7 +30,6 @@ def init_vector_search_tool( "tool_description": tool_description, "embedding": embedding, "text_column": text_column, - "endpoint": endpoint, } if index_name != DELTA_SYNC_INDEX: kwargs.update( @@ -65,7 +63,6 @@ def test_chat_model_bind_tools(llm: ChatDatabricks, index_name: str) -> None: @pytest.mark.parametrize("tool_description", [None, "Test tool for vector search"]) @pytest.mark.parametrize("embedding", [None, EMBEDDING_MODEL]) @pytest.mark.parametrize("text_column", [None, "text"]) -@pytest.mark.parametrize("endpoint", [None, "test_endpoint"]) def test_vector_search_retriever_tool_combinations( index_name: str, columns: Optional[List[str]], @@ -73,7 +70,6 @@ def test_vector_search_retriever_tool_combinations( tool_description: Optional[str], embedding: Optional[Any], text_column: Optional[str], - endpoint: Optional[str], ) -> None: if index_name == DELTA_SYNC_INDEX: embedding = None @@ -86,7 +82,6 @@ def test_vector_search_retriever_tool_combinations( tool_description=tool_description, embedding=embedding, text_column=text_column, - endpoint=endpoint, ) assert isinstance(vector_search_tool, BaseTool) result = vector_search_tool.invoke("Databricks Agent Framework")