Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Not understanding the significance of 1e-7 in Grad-CAM++ implementation #18

Open
r0cketr1kky opened this issue Jun 30, 2020 · 0 comments

Comments

@r0cketr1kky
Copy link

Hi,
Below is the code for Grad-CAM++ as implemented in this repository.
I don't understand why 1e-7 is added to the denominator out here alpha = alpha_num.div(alpha_denom + 1e-7).
Any reason for adding this term?

class GradCAMpp(GradCAM):
    """
        GradCAM++, inherit from BaseCAM
    """

    def __init__(self, model_dict):
        super(GradCAMpp, self).__init__(model_dict)

    def forward(self, input_image, class_idx=None, retain_graph=False):

        """Generates GradCAM++ result.
        # Arguments
            input_image: torch.Tensor. Preprocessed image with shape (1, C, H, W).
            class_idx: int. Index of target class. Defaults to be index of predicted class.
        # Return
            Result of GradCAM++ (torch.Tensor) with shape (1, H, W).
        """

        b, c, h, w = input_image.size()

        logit = self.model_arch(input_image)
        if class_idx is None:
            score = logit[:, logit.max(1)[-1]].squeeze()
        else:
            score = logit[:, class_idx].squeeze()

        
        if torch.cuda.is_available():
          score = score.cuda()
          logit = logit.cuda()

        self.model_arch.zero_grad()
        score.backward(retain_graph=retain_graph)
        gradients = self.gradients['value']
        activations = self.activations['value']
        b, k, u, v = gradients.size()

        if torch.cuda.is_available():
          activations = activations.cuda()
          gradients = gradients.cuda()
        
        alpha_num = gradients.pow(2)

        global_sum = activations.view(b, k, u * v).sum(-1, keepdim=True).view(b, k, 1, 1)
        alpha_denom = gradients.pow(2).mul(2) + global_sum.mul(gradients.pow(3))

        alpha_denom = torch.where(alpha_denom != 0.0, alpha_denom, torch.ones_like(alpha_denom))

        alpha = alpha_num.div(alpha_denom + 1e-7)
        positive_gradients = F.relu(score.exp() * gradients)
        weights = (alpha * positive_gradients).view(b, k, u * v).sum(-1).view(b, k, 1, 1)

        saliency_map = (weights * activations).sum(1, keepdim=True)
        saliency_map = F.relu(saliency_map)
        saliency_map = F.interpolate(saliency_map, size=(224, 224), mode='bilinear', align_corners=False)
        saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max()
        saliency_map = (saliency_map - saliency_map_min).div(saliency_map_max - saliency_map_min).data

        return saliency_map
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant