This repository has been archived by the owner on Apr 3, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 666
/
srez_model.py
494 lines (359 loc) · 18.5 KB
/
srez_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
class Model:
"""A neural network model.
Currently only supports a feedforward architecture."""
def __init__(self, name, features):
self.name = name
self.outputs = [features]
def _get_layer_str(self, layer=None):
if layer is None:
layer = self.get_num_layers()
return '%s_L%03d' % (self.name, layer+1)
def _get_num_inputs(self):
return int(self.get_output().get_shape()[-1])
def _glorot_initializer(self, prev_units, num_units, stddev_factor=1.0):
"""Initialization in the style of Glorot 2010.
stddev_factor should be 1.0 for linear activations, and 2.0 for ReLUs"""
stddev = np.sqrt(stddev_factor / np.sqrt(prev_units*num_units))
return tf.truncated_normal([prev_units, num_units],
mean=0.0, stddev=stddev)
def _glorot_initializer_conv2d(self, prev_units, num_units, mapsize, stddev_factor=1.0):
"""Initialization in the style of Glorot 2010.
stddev_factor should be 1.0 for linear activations, and 2.0 for ReLUs"""
stddev = np.sqrt(stddev_factor / (np.sqrt(prev_units*num_units)*mapsize*mapsize))
return tf.truncated_normal([mapsize, mapsize, prev_units, num_units],
mean=0.0, stddev=stddev)
def get_num_layers(self):
return len(self.outputs)
def add_batch_norm(self, scale=False):
"""Adds a batch normalization layer to this model.
See ArXiv 1502.03167v3 for details."""
# TBD: This appears to be very flaky, often raising InvalidArgumentError internally
with tf.variable_scope(self._get_layer_str()):
out = tf.contrib.layers.batch_norm(self.get_output(), scale=scale)
self.outputs.append(out)
return self
def add_flatten(self):
"""Transforms the output of this network to a 1D tensor"""
with tf.variable_scope(self._get_layer_str()):
batch_size = int(self.get_output().get_shape()[0])
out = tf.reshape(self.get_output(), [batch_size, -1])
self.outputs.append(out)
return self
def add_dense(self, num_units, stddev_factor=1.0):
"""Adds a dense linear layer to this model.
Uses Glorot 2010 initialization assuming linear activation."""
assert len(self.get_output().get_shape()) == 2, "Previous layer must be 2-dimensional (batch, channels)"
with tf.variable_scope(self._get_layer_str()):
prev_units = self._get_num_inputs()
# Weight term
initw = self._glorot_initializer(prev_units, num_units,
stddev_factor=stddev_factor)
weight = tf.get_variable('weight', initializer=initw)
# Bias term
initb = tf.constant(0.0, shape=[num_units])
bias = tf.get_variable('bias', initializer=initb)
# Output of this layer
out = tf.matmul(self.get_output(), weight) + bias
self.outputs.append(out)
return self
def add_sigmoid(self):
"""Adds a sigmoid (0,1) activation function layer to this model."""
with tf.variable_scope(self._get_layer_str()):
prev_units = self._get_num_inputs()
out = tf.nn.sigmoid(self.get_output())
self.outputs.append(out)
return self
def add_softmax(self):
"""Adds a softmax operation to this model"""
with tf.variable_scope(self._get_layer_str()):
this_input = tf.square(self.get_output())
reduction_indices = list(range(1, len(this_input.get_shape())))
acc = tf.reduce_sum(this_input, reduction_indices=reduction_indices, keep_dims=True)
out = this_input / (acc+FLAGS.epsilon)
#out = tf.verify_tensor_all_finite(out, "add_softmax failed; is sum equal to zero?")
self.outputs.append(out)
return self
def add_relu(self):
"""Adds a ReLU activation function to this model"""
with tf.variable_scope(self._get_layer_str()):
out = tf.nn.relu(self.get_output())
self.outputs.append(out)
return self
def add_elu(self):
"""Adds a ELU activation function to this model"""
with tf.variable_scope(self._get_layer_str()):
out = tf.nn.elu(self.get_output())
self.outputs.append(out)
return self
def add_lrelu(self, leak=.2):
"""Adds a leaky ReLU (LReLU) activation function to this model"""
with tf.variable_scope(self._get_layer_str()):
t1 = .5 * (1 + leak)
t2 = .5 * (1 - leak)
out = t1 * self.get_output() + \
t2 * tf.abs(self.get_output())
self.outputs.append(out)
return self
def add_conv2d(self, num_units, mapsize=1, stride=1, stddev_factor=1.0):
"""Adds a 2D convolutional layer."""
assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)"
with tf.variable_scope(self._get_layer_str()):
prev_units = self._get_num_inputs()
# Weight term and convolution
initw = self._glorot_initializer_conv2d(prev_units, num_units,
mapsize,
stddev_factor=stddev_factor)
weight = tf.get_variable('weight', initializer=initw)
out = tf.nn.conv2d(self.get_output(), weight,
strides=[1, stride, stride, 1],
padding='SAME')
# Bias term
initb = tf.constant(0.0, shape=[num_units])
bias = tf.get_variable('bias', initializer=initb)
out = tf.nn.bias_add(out, bias)
self.outputs.append(out)
return self
def add_conv2d_transpose(self, num_units, mapsize=1, stride=1, stddev_factor=1.0):
"""Adds a transposed 2D convolutional layer"""
assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)"
with tf.variable_scope(self._get_layer_str()):
prev_units = self._get_num_inputs()
# Weight term and convolution
initw = self._glorot_initializer_conv2d(prev_units, num_units,
mapsize,
stddev_factor=stddev_factor)
weight = tf.get_variable('weight', initializer=initw)
weight = tf.transpose(weight, perm=[0, 1, 3, 2])
prev_output = self.get_output()
output_shape = [FLAGS.batch_size,
int(prev_output.get_shape()[1]) * stride,
int(prev_output.get_shape()[2]) * stride,
num_units]
out = tf.nn.conv2d_transpose(self.get_output(), weight,
output_shape=output_shape,
strides=[1, stride, stride, 1],
padding='SAME')
# Bias term
initb = tf.constant(0.0, shape=[num_units])
bias = tf.get_variable('bias', initializer=initb)
out = tf.nn.bias_add(out, bias)
self.outputs.append(out)
return self
def add_residual_block(self, num_units, mapsize=3, num_layers=2, stddev_factor=1e-3):
"""Adds a residual block as per Arxiv 1512.03385, Figure 3"""
assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)"
# Add projection in series if needed prior to shortcut
if num_units != int(self.get_output().get_shape()[3]):
self.add_conv2d(num_units, mapsize=1, stride=1, stddev_factor=1.)
bypass = self.get_output()
# Residual block
for _ in range(num_layers):
self.add_batch_norm()
self.add_relu()
self.add_conv2d(num_units, mapsize=mapsize, stride=1, stddev_factor=stddev_factor)
self.add_sum(bypass)
return self
def add_bottleneck_residual_block(self, num_units, mapsize=3, stride=1, transpose=False):
"""Adds a bottleneck residual block as per Arxiv 1512.03385, Figure 3"""
assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)"
# Add projection in series if needed prior to shortcut
if num_units != int(self.get_output().get_shape()[3]) or stride != 1:
ms = 1 if stride == 1 else mapsize
#bypass.add_batch_norm() # TBD: Needed?
if transpose:
self.add_conv2d_transpose(num_units, mapsize=ms, stride=stride, stddev_factor=1.)
else:
self.add_conv2d(num_units, mapsize=ms, stride=stride, stddev_factor=1.)
bypass = self.get_output()
# Bottleneck residual block
self.add_batch_norm()
self.add_relu()
self.add_conv2d(num_units//4, mapsize=1, stride=1, stddev_factor=2.)
self.add_batch_norm()
self.add_relu()
if transpose:
self.add_conv2d_transpose(num_units//4,
mapsize=mapsize,
stride=1,
stddev_factor=2.)
else:
self.add_conv2d(num_units//4,
mapsize=mapsize,
stride=1,
stddev_factor=2.)
self.add_batch_norm()
self.add_relu()
self.add_conv2d(num_units, mapsize=1, stride=1, stddev_factor=2.)
self.add_sum(bypass)
return self
def add_sum(self, term):
"""Adds a layer that sums the top layer with the given term"""
with tf.variable_scope(self._get_layer_str()):
prev_shape = self.get_output().get_shape()
term_shape = term.get_shape()
#print("%s %s" % (prev_shape, term_shape))
assert prev_shape == term_shape and "Can't sum terms with a different size"
out = tf.add(self.get_output(), term)
self.outputs.append(out)
return self
def add_mean(self):
"""Adds a layer that averages the inputs from the previous layer"""
with tf.variable_scope(self._get_layer_str()):
prev_shape = self.get_output().get_shape()
reduction_indices = list(range(len(prev_shape)))
assert len(reduction_indices) > 2 and "Can't average a (batch, activation) tensor"
reduction_indices = reduction_indices[1:-1]
out = tf.reduce_mean(self.get_output(), reduction_indices=reduction_indices)
self.outputs.append(out)
return self
def add_upscale(self):
"""Adds a layer that upscales the output by 2x through nearest neighbor interpolation"""
prev_shape = self.get_output().get_shape()
size = [2 * int(s) for s in prev_shape[1:3]]
out = tf.image.resize_nearest_neighbor(self.get_output(), size)
self.outputs.append(out)
return self
def get_output(self):
"""Returns the output from the topmost layer of the network"""
return self.outputs[-1]
def get_variable(self, layer, name):
"""Returns a variable given its layer and name.
The variable must already exist."""
scope = self._get_layer_str(layer)
collection = tf.get_collection(tf.GraphKeys.VARIABLES, scope=scope)
# TBD: Ugly!
for var in collection:
if var.name[:-2] == scope+'/'+name:
return var
return None
def get_all_layer_variables(self, layer):
"""Returns all variables in the given layer"""
scope = self._get_layer_str(layer)
return tf.get_collection(tf.GraphKeys.VARIABLES, scope=scope)
def _discriminator_model(sess, features, disc_input):
# Fully convolutional model
mapsize = 3
layers = [64, 128, 256, 512]
old_vars = tf.all_variables()
model = Model('DIS', 2*disc_input - 1)
for layer in range(len(layers)):
nunits = layers[layer]
stddev_factor = 2.0
model.add_conv2d(nunits, mapsize=mapsize, stride=2, stddev_factor=stddev_factor)
model.add_batch_norm()
model.add_relu()
# Finalization a la "all convolutional net"
model.add_conv2d(nunits, mapsize=mapsize, stride=1, stddev_factor=stddev_factor)
model.add_batch_norm()
model.add_relu()
model.add_conv2d(nunits, mapsize=1, stride=1, stddev_factor=stddev_factor)
model.add_batch_norm()
model.add_relu()
# Linearly map to real/fake and return average score
# (softmax will be applied later)
model.add_conv2d(1, mapsize=1, stride=1, stddev_factor=stddev_factor)
model.add_mean()
new_vars = tf.all_variables()
disc_vars = list(set(new_vars) - set(old_vars))
return model.get_output(), disc_vars
def _generator_model(sess, features, labels, channels):
# Upside-down all-convolutional resnet
mapsize = 3
res_units = [256, 128, 96]
old_vars = tf.all_variables()
# See Arxiv 1603.05027
model = Model('GEN', features)
for ru in range(len(res_units)-1):
nunits = res_units[ru]
for j in range(2):
model.add_residual_block(nunits, mapsize=mapsize)
# Spatial upscale (see http://distill.pub/2016/deconv-checkerboard/)
# and transposed convolution
model.add_upscale()
model.add_batch_norm()
model.add_relu()
model.add_conv2d_transpose(nunits, mapsize=mapsize, stride=1, stddev_factor=1.)
# Finalization a la "all convolutional net"
nunits = res_units[-1]
model.add_conv2d(nunits, mapsize=mapsize, stride=1, stddev_factor=2.)
# Worse: model.add_batch_norm()
model.add_relu()
model.add_conv2d(nunits, mapsize=1, stride=1, stddev_factor=2.)
# Worse: model.add_batch_norm()
model.add_relu()
# Last layer is sigmoid with no batch normalization
model.add_conv2d(channels, mapsize=1, stride=1, stddev_factor=1.)
model.add_sigmoid()
new_vars = tf.all_variables()
gene_vars = list(set(new_vars) - set(old_vars))
return model.get_output(), gene_vars
def create_model(sess, features, labels):
# Generator
rows = int(features.get_shape()[1])
cols = int(features.get_shape()[2])
channels = int(features.get_shape()[3])
gene_minput = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, rows, cols, channels])
# TBD: Is there a better way to instance the generator?
with tf.variable_scope('gene') as scope:
gene_output, gene_var_list = \
_generator_model(sess, features, labels, channels)
scope.reuse_variables()
gene_moutput, _ = _generator_model(sess, gene_minput, labels, channels)
# Discriminator with real data
disc_real_input = tf.identity(labels, name='disc_real_input')
# TBD: Is there a better way to instance the discriminator?
with tf.variable_scope('disc') as scope:
disc_real_output, disc_var_list = \
_discriminator_model(sess, features, disc_real_input)
scope.reuse_variables()
disc_fake_output, _ = _discriminator_model(sess, features, gene_output)
return [gene_minput, gene_moutput,
gene_output, gene_var_list,
disc_real_output, disc_fake_output, disc_var_list]
def _downscale(images, K):
"""Differentiable image downscaling by a factor of K"""
arr = np.zeros([K, K, 3, 3])
arr[:,:,0,0] = 1.0/(K*K)
arr[:,:,1,1] = 1.0/(K*K)
arr[:,:,2,2] = 1.0/(K*K)
dowscale_weight = tf.constant(arr, dtype=tf.float32)
downscaled = tf.nn.conv2d(images, dowscale_weight,
strides=[1, K, K, 1],
padding='SAME')
return downscaled
def create_generator_loss(disc_output, gene_output, features):
# I.e. did we fool the discriminator?
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(disc_output, tf.ones_like(disc_output))
gene_ce_loss = tf.reduce_mean(cross_entropy, name='gene_ce_loss')
# I.e. does the result look like the feature?
K = int(gene_output.get_shape()[1])//int(features.get_shape()[1])
assert K == 2 or K == 4 or K == 8
downscaled = _downscale(gene_output, K)
gene_l1_loss = tf.reduce_mean(tf.abs(downscaled - features), name='gene_l1_loss')
gene_loss = tf.add((1.0 - FLAGS.gene_l1_factor) * gene_ce_loss,
FLAGS.gene_l1_factor * gene_l1_loss, name='gene_loss')
return gene_loss
def create_discriminator_loss(disc_real_output, disc_fake_output):
# I.e. did we correctly identify the input as real or not?
cross_entropy_real = tf.nn.sigmoid_cross_entropy_with_logits(disc_real_output, tf.ones_like(disc_real_output))
disc_real_loss = tf.reduce_mean(cross_entropy_real, name='disc_real_loss')
cross_entropy_fake = tf.nn.sigmoid_cross_entropy_with_logits(disc_fake_output, tf.zeros_like(disc_fake_output))
disc_fake_loss = tf.reduce_mean(cross_entropy_fake, name='disc_fake_loss')
return disc_real_loss, disc_fake_loss
def create_optimizers(gene_loss, gene_var_list,
disc_loss, disc_var_list):
# TBD: Does this global step variable need to be manually incremented? I think so.
global_step = tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step')
learning_rate = tf.placeholder(dtype=tf.float32, name='learning_rate')
gene_opti = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=FLAGS.learning_beta1,
name='gene_optimizer')
disc_opti = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=FLAGS.learning_beta1,
name='disc_optimizer')
gene_minimize = gene_opti.minimize(gene_loss, var_list=gene_var_list, name='gene_loss_minimize', global_step=global_step)
disc_minimize = disc_opti.minimize(disc_loss, var_list=disc_var_list, name='disc_loss_minimize', global_step=global_step)
return (global_step, learning_rate, gene_minimize, disc_minimize)