-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
104 lines (83 loc) · 2.93 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import cv2
from albumentations import Compose, PadIfNeeded
from transforms.albu import IsotropicResize
import numpy as np
import os
import cv2
import torch
from statistics import mean
approaches = {1: "FaceShifter", 2: "FS-GAN", 3: "DeepFakes", 4: "BlendFace", 5: "MMReplacement", 6: "DeepFakes-StarGAN-Stack", 7: "Talking Head Video", 8: "ATVG-Net", 9: "StarGAN-BlendFace-Stack", 10: "First Order Motion", 11: "StyleGAN2", 12: "MaskGAN", 13: "StarGAN2", 14: "SC-FEGAN", 15: "DiscoFaceGAN"}
groups = {"Transfer": [1, 2, 3], "Swap": [4, 5], "FSM": [6, 9], "Face_Reenactment": [7, 8, 10], "Face Editing": [11, 12, 13, 14, 15]}
def transform_frame(image, image_size):
transform_pipeline = Compose([
IsotropicResize(max_side=image_size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
PadIfNeeded(min_height=image_size, min_width=image_size, border_mode=cv2.BORDER_REPLICATE)
]
)
return transform_pipeline(image=image)['image']
def resize(image, image_size):
try:
return cv2.resize(image, dsize=(image_size, image_size))
except:
return []
def custom_round(values):
result = []
for value in values:
if value > 0.55:
result.append(1)
else:
result.append(0)
return np.asarray(result)
def get_n_params(model):
pp=0
for p in list(model.parameters()):
nn=1
for s in list(p.size()):
nn = nn*s
pp += nn
return pp
def check_correct(preds, labels):
preds = preds.cpu()
labels = labels.cpu()
preds = [np.asarray(torch.sigmoid(pred).detach().numpy()).round() for pred in preds]
correct = 0
positive_class = 0
negative_class = 0
for i in range(len(labels)):
pred = int(preds[i])
if labels[i] == pred:
correct += 1
if pred == 1:
positive_class += 1
else:
negative_class += 1
return correct, positive_class, negative_class
def custom_round(pred):
if pred > 0.5:
return 1.
else:
return 0.
def multiple_custom_round(values):
result = []
for value in values:
if value > 0.6:
result.append(1)
else:
result.append(0)
return np.asarray(result)
def center_crop(img, new_width=None, new_height=None):
width = img.shape[1]
height = img.shape[0]
if new_width is None:
new_width = min(width, height)
if new_height is None:
new_height = min(width, height)
left = int(np.ceil((width - new_width) / 2))
right = width - int(np.floor((width - new_width) / 2))
top = int(np.ceil((height - new_height) / 2))
bottom = height - int(np.floor((height - new_height) / 2))
if len(img.shape) == 2:
center_cropped_img = img[top:bottom, left:right]
else:
center_cropped_img = img[top:bottom, left:right, ...]
return center_cropped_img