-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample-inc-output.py
440 lines (354 loc) · 14.4 KB
/
example-inc-output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import numpy as np
import scipy as sp
import sympy as sy
from sympy.matrices import Matrix
from sympy import *
# LaTeX rendered SymPy output
from sympy import init_printing
init_printing()
def Transpose(matrix):
return sy.transpose(matrix)
def VectorRow(vector_list):
return sy.transpose(Matrix(vector_list))
def VectorAdd(a, b):
return a+b
def Multiply(a, b):
return a*b
D_blade_1 = Symbol('D_blade_1')
D_blade_2 = Symbol('D_blade_2')
D_tower = Symbol('D_tower')
JB = Symbol('JB')
JT = Symbol('JT')
Jblade = Symbol('Jblade')
Jtower = Symbol('Jtower')
Omega = Symbol('Omega')
Omega1 = Symbol('Omega1')
OmegaXomega1 = Symbol('OmegaXomega1')
OmegaXomega2 = Symbol('OmegaXomega2')
OmegaXomegarho = Symbol('OmegaXomegarho')
R = Symbol('R')
R_cg_T = Symbol('R_cg_T')
R_cg_T_0 = Symbol('R_cg_T_0')
R_cg_T_flux = Symbol('R_cg_T_flux')
R_cg_beta_1 = Symbol('R_cg_beta_1')
R_cg_beta_1_flux = Symbol('R_cg_beta_1_flux')
R_cg_beta_2 = Symbol('R_cg_beta_2')
R_cg_beta_2_flux = Symbol('R_cg_beta_2_flux')
R_cg_blade_1_0 = Symbol('R_cg_blade_1_0')
R_cg_blade_2_0 = Symbol('R_cg_blade_2_0')
Rbeta1 = Symbol('Rbeta1')
Rbeta2 = Symbol('Rbeta2')
Rpsi1 = Symbol('Rpsi1')
Rpsi2 = Symbol('Rpsi2')
Rrho = Symbol('Rrho')
T1_eq_beta1full = Symbol('T1_eq_beta1full')
T1_eq_beta2full = Symbol('T1_eq_beta2full')
T1_eq_rhofull = Symbol('T1_eq_rhofull')
T2_eq_beta1full = Symbol('T2_eq_beta1full')
T2_eq_beta2full = Symbol('T2_eq_beta2full')
T2_eq_rhofull = Symbol('T2_eq_rhofull')
T3_eq_beta1full = Symbol('T3_eq_beta1full')
T3_eq_beta2full = Symbol('T3_eq_beta2full')
T3_eq_rhofull = Symbol('T3_eq_rhofull')
T4_eq_rhofull = Symbol('T4_eq_rhofull')
T5_eq_rhofull = Symbol('T5_eq_rhofull')
T_blade_1 = Symbol('T_blade_1')
T_blade_2 = Symbol('T_blade_2')
T_rot_blade_1 = Symbol('T_rot_blade_1')
T_rot_blade_2 = Symbol('T_rot_blade_2')
T_rot_tower = Symbol('T_rot_tower')
T_total = Symbol('T_total')
T_tower = Symbol('T_tower')
V_g = Symbol('V_g')
V_springs = Symbol('V_springs')
V_total = Symbol('V_total')
Xomega1 = Symbol('Xomega1')
Xomega2 = Symbol('Xomega2')
Xomegarho = Symbol('Xomegarho')
aa_FF = Symbol('aa_FF')
bb_FF_1 = Symbol('bb_FF_1')
bb_FF_2 = Symbol('bb_FF_2')
beta1 = Symbol('beta1')
beta2 = Symbol('beta2')
betaflux1 = Symbol('betaflux1')
betaflux2 = Symbol('betaflux2')
blade = Symbol('blade')
dT_dbeta1 = Symbol('dT_dbeta1')
dT_dbeta1_t = Symbol('dT_dbeta1_t')
dT_dbeta1_tt = Symbol('dT_dbeta1_tt')
dT_dbeta1flux = Symbol('dT_dbeta1flux')
dT_dbeta1flux_t = Symbol('dT_dbeta1flux_t')
dT_dbeta1flux_tt = Symbol('dT_dbeta1flux_tt')
dT_dbeta2 = Symbol('dT_dbeta2')
dT_dbeta2_t = Symbol('dT_dbeta2_t')
dT_dbeta2_tt = Symbol('dT_dbeta2_tt')
dT_dbeta2flux = Symbol('dT_dbeta2flux')
dT_dbeta2flux_t = Symbol('dT_dbeta2flux_t')
dT_dbeta2flux_tt = Symbol('dT_dbeta2flux_tt')
dT_drho = Symbol('dT_drho')
dT_drho_t = Symbol('dT_drho_t')
dT_drho_tt = Symbol('dT_drho_tt')
dT_drhoflux = Symbol('dT_drhoflux')
dT_drhoflux_t = Symbol('dT_drhoflux_t')
dT_drhoflux_tt = Symbol('dT_drhoflux_tt')
dV_dbeta1 = Symbol('dV_dbeta1')
dV_dbeta1_t = Symbol('dV_dbeta1_t')
dV_dbeta1_tt = Symbol('dV_dbeta1_tt')
dV_dbeta2 = Symbol('dV_dbeta2')
dV_dbeta2_t = Symbol('dV_dbeta2_t')
dV_dbeta2_tt = Symbol('dV_dbeta2_tt')
dV_drho = Symbol('dV_drho')
dV_drho_t = Symbol('dV_drho_t')
dV_drho_tt = Symbol('dV_drho_tt')
ddt_dT_dbeta1flux = Symbol('ddt_dT_dbeta1flux')
ddt_dT_dbeta2flux = Symbol('ddt_dT_dbeta2flux')
ddt_dT_drhoflux = Symbol('ddt_dT_drhoflux')
diff = Symbol('diff')
e = Symbol('e')
eq_beta1full = Symbol('eq_beta1full')
eq_beta2full = Symbol('eq_beta2full')
eq_mo_beta1_FF_lin = Symbol('eq_mo_beta1_FF_lin')
eq_mo_beta2_FF_lin = Symbol('eq_mo_beta2_FF_lin')
eq_mo_rho_FF_lin = Symbol('eq_mo_rho_FF_lin')
eq_rhofull = Symbol('eq_rhofull')
flux = Symbol('flux')
flux1 = Symbol('flux1')
full = Symbol('full')
g = Symbol('g')
g_ = Symbol('g_')
horner = Symbol('horner')
ka = Symbol('ka')
kb = Symbol('kb')
l = Symbol('l')
m_b = Symbol('m_b')
m_t = Symbol('m_t')
omega1 = Symbol('omega1')
omega2 = Symbol('omega2')
omegaOmega1 = Symbol('omegaOmega1')
omegaOmega2 = Symbol('omegaOmega2')
omegabeta1 = Symbol('omegabeta1')
omegabeta2 = Symbol('omegabeta2')
omegarho = Symbol('omegarho')
p_omega1 = Symbol('p_omega1')
p_omega2 = Symbol('p_omega2')
psi = Symbol('psi')
psi1 = Symbol('psi1')
psiflux = Symbol('psiflux')
q_omega1 = Symbol('q_omega1')
q_omega2 = Symbol('q_omega2')
r_0 = Symbol('r_0')
r_2 = Symbol('r_2')
r_3_beta_1 = Symbol('r_3_beta_1')
r_3_beta_1_flux = Symbol('r_3_beta_1_flux')
r_3_beta_2 = Symbol('r_3_beta_2')
r_3_beta_2_flux = Symbol('r_3_beta_2_flux')
r_cg_T = Symbol('r_cg_T')
r_cg_beta = Symbol('r_cg_beta')
r_omega1 = Symbol('r_omega1')
r_omega2 = Symbol('r_omega2')
rho = Symbol('rho')
rhoflux = Symbol('rhoflux')
solve = Symbol('solve')
subs = Symbol('subs')
t = Symbol('t')
tower = Symbol('tower')
#load linear algebra package
#> restart;
#> with(CodeGeneration):
#> with(LinearAlgebra):
#Transformation matrices for tower middle
Rrho=Matrix([[cos(rho),0,-sin(rho)],[0,1,0],[sin(rho),0,cos(rho)]])
#Transformation matrices for blade 1
Rpsi1=Matrix([[-cos(psi),sin(psi),0],[-sin(psi),-cos(psi),0],[0,0,1]])
Rbeta1=Matrix([[cos(beta1),0,-sin(beta1)],[0,1,0],[sin(beta1),0,cos(beta1)]])
#Transformation matrices for blade 2
Rpsi2=Matrix([[cos(psi),-sin(psi),0],[sin(psi),cos(psi),0],[0,0,1]])
Rbeta2=Matrix([[cos(beta2),0,-sin(beta2)],[0,1,0],[sin(beta2),0,cos(beta2)]])
#omega of blade 1, in function of {E_beta_1}
#omega of the tower, in function of {E_1}
omegarho=VectorRow([0,rhoflux,0])
omegarho[0]=Multiply(omegarho,Multiply(Transpose(Rpsi[0]),Transpose(Rbeta1)))
omegaOmega1=Multiply(VectorRow([0,0,-Omega]),Transpose(Rbeta1))
omegabeta1=VectorRow([0,betaflux[0],0])
omega1=VectorAdd(VectorAdd(omegarho[0],omegaOmega[0]),omegabeta1)
p_omega1=omega1
q_omega1=omega1
r_omega1=omega1
#omega of blade 2, in function of {E_beta_2}
omegarho[1]=Multiply(omegarho,Multiply(Transpose(Rpsi[1]),Transpose(Rbeta2)))
omegaOmega2=Multiply(VectorRow([0,0,-Omega]),Transpose(Rbeta2))
omegabeta2=VectorRow([0,betaflux[1],0])
omega2=VectorAdd(VectorAdd(omegarho[1],omegaOmega[1]),omegabeta2)
p_omega2=omega2
q_omega2=omega2
r_omega2=omega2
#rotation operators
OmegaXomegarho=Matrix([[0,0,-rhoflux],[0,0,0],[rhoflux,0,0]])
OmegaXomega1=Matrix([[0,r_omega1,-q_omega1],[-r_omega1,0,p_omega1],[q_omega1,-p_omega1,0]])
OmegaXomega2=Matrix([[0,r_omega2,-q_omega2],[-r_omega2,0,p_omega2],[q_omega2,-p_omega2,0]])
#Position vectors for the cg of the blades and the cg of the 2nd tower section
#All captial R position vectors here are expressed in {E_1}
#all r position vectors are in local reference frame
r_2=VectorRow([l/2,0,0])
r_0=VectorRow([l/2,0,0])
r_cg_beta=VectorRow([R/2,0,0])
r_cg_T=VectorRow([l/4,0,0])
r_3_beta_1=VectorRow([(-e*cos(psi)),(e*sin(psi)),0])
r_3_beta_2=VectorRow([(e*cos(psi)),(-e*sin(psi)),0])
r_3_beta_1_flux=VectorRow([(e*sin(psi)*psiflux),(e*cos(psi)*psiflux),0])
r_3_beta_2_flux=VectorRow([(-e*sin(psi)*psiflux),(-e*cos(psi)*psiflux),0])
R_cg_beta_1=Multiply(r_0,Transpose(Rrho))
R_cg_beta_2=Multiply(r_0,Transpose(Rrho))
R_cg_T=Multiply(r_0,Transpose(Rrho))
R_cg_beta_1_flux=Multiply(r_2,OmegaXomegarho)
R_cg_beta_2_flux=Multiply(r_2,OmegaXomegarho)
R_cg_T_flux=Multiply(r_cg_T,OmegaXomegarho)
#Inertia matrices of cg
#> JB = (1/12)*m_b*R*R;
Jblade=Matrix([[0,0,0],[0,JB,0],[0,0,JB]])
#> JT = (1/12)*m_t*(l/2)*(l/2);
Jtower=Matrix([[0,0,0],[0,JT,0],[0,0,JT]])
#Kinetic energy: translational part
T_blade_1=0.5*m_b*((R_cg_beta_1_flux[0]*R_cg_beta_1_flux[0])+(R_cg_beta_1_flux[1]*R_cg_beta_1_flux[1])+(R_cg_beta_1_flux[2]*R_cg_beta_1_flux[2]))
T_blade_2=0.5*m_b*((R_cg_beta_2_flux[0]*R_cg_beta_2_flux[0])+(R_cg_beta_2_flux[1]*R_cg_beta_2_flux[1])+(R_cg_beta_2_flux[2]*R_cg_beta_2_flux[2]))
T_tower=0.5*m_t*((R_cg_T_flux[0]*R_cg_T_flux[0])+(R_cg_T_flux[1]*R_cg_T_flux[1])+(R_cg_T_flux[2]*R_cg_T_flux[2]))
#Kinetic energy: rotational part
D_blade_1=Multiply(omega1,Jblade)
D_blade_2=Multiply(omega2,Jblade)
D_tower=Multiply(omegarho,Jtower)
T_rot_blade_1=0.5*
T_rot_blade_2=0.5*
T_rot_tower=0.5*
#Total kinetic energy
T_total=T_blade_1+T_blade_2+T_tower+T_rot_blade_1+T_rot_blade_2+T_rot_tower
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
#Potential energy
g=VectorRow([g_,0,0])
#Position vectors expressed in {E_0} for the potential energy
R_cg_blade_1_0=r_0+Multiply(r_2,Rrho)+Multiply(r_3_beta_1,Rrho)+Multiply(r_cg_beta,Multiply(Rbeta1,Multiply(Rpsi1,Rrho)))
R_cg_blade_2_0=r_0+Multiply(r_2,Rrho)+Multiply(r_3_beta_2,Rrho)+Multiply(r_cg_beta,Multiply(Rbeta2,Multiply(Rpsi2,Rrho)))
R_cg_T_0=r_0+Multiply(r_cg_T,Rrho)
V_g=(m_b*g[0]*(R_cg_blade_1_0[0]+R_cg_blade_2_0[0]))+(m_t*g[0]*R_cg_T_0[0])
V_springs=1/2*kb*beta1*beta1+1/2*kb*beta2*beta2+1/2*ka*rho*rho
V_total=V_g+V_springs
#> `starting length` = length(V_total), `converting to horner`=length(convert(V_total,horner)), factoring=length(factor(V_total)), `simplify length` = length(symplify(V_total));
#Full equations of motion using the Lagrangian
#eq of motion for beta_1
dT_dbeta1flux=diff(T_total,betaflux[0])
dT_dbeta1=diff(T_total,beta1)
dV_dbeta1=diff(V_total,beta1)
#indicate time dependencies
#indicate time dependencies
dT_dbeta1_t=subs
dV_dbeta1_t=subs
dT_dbeta1flux_t=subs
#change q_flux to d/dt(q)
dT_dbeta1_tt=subs
dV_dbeta1_tt=subs
dT_dbeta1flux_tt=subs
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
dT_dbeta1flux_tt=convert(dT_dbeta1flux_tt,horner)
#differentiate with respect to t and construct equations of motion for beta 1
ddt_dT_dbeta1flux=diff(dT_dbeta1flux_tt,t)
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
ddt_dT_dbeta1flux=convert(ddt_dT_dbeta1flux,horner)
eq_beta1full=ddt_dT_dbeta1flux-dT_dbeta1_tt+dV_dbeta1_tt
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
eq_beta1full=convert(eq_beta1full,horner)
eq_beta1full=solve(eq_beta1full,diff(beta1(t),t,t))
#simplify expression and lose time dependencie notation and d/dt
T1_eq_beta1full=subs
T2_eq_beta1full=subs
T3_eq_beta1full=subs
bb_FF_1=T3_eq_beta1full
#eq of motion for beta_2
dT_dbeta2flux=diff(T_total,betaflux[1])
dT_dbeta2=diff(T_total,beta2)
dV_dbeta2=diff(V_total,beta2)
#indicate time dependencies
#indicate time dependencies
dT_dbeta2_t=subs
dV_dbeta2_t=subs
dT_dbeta2flux_t=subs
#change q_flux to d/dt(q)
dT_dbeta2_tt=subs
dV_dbeta2_tt=subs
dT_dbeta2flux_tt=subs
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
dT_dbeta2flux_tt=convert(dT_dbeta2flux_tt,horner)
#differentiate with respect to t and construct equations of motion for beta 2
ddt_dT_dbeta2flux=diff(dT_dbeta2flux_tt,t)
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
ddt_dT_dbeta2flux=convert(ddt_dT_dbeta2flux,horner)
eq_beta2full=ddt_dT_dbeta2flux-dT_dbeta2_tt+dV_dbeta2_tt
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
eq_beta2full=convert(eq_beta2full,horner)
eq_beta2full=solve(eq_beta2full,diff(beta2(t),t,t))
#simplify expression and lose time dependencie notation and d/dt
T1_eq_beta2full=subs
T2_eq_beta2full=subs
T3_eq_beta2full=subs
bb_FF_2=T3_eq_beta2full
#eq of motion for rho
dT_drhoflux=diff(T_total,rhoflux)
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
#replace first rho[flux] with rho_f, otherwise maple will display the partial derivative of d/drho (rho[flux]) which is ofcourse zero, but maple doesn't know
dT_drho=diff
dV_drho=diff(V_total,rho)
#indicate time dependencies
#indicate time dependencies
dT_drho_t=subs
dV_drho_t=subs
dT_drhoflux_t=subs
#change q_flux to d/dt(q)
dT_drho_tt=subs
dV_drho_tt=subs
dT_drhoflux_tt=subs
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
#differentiate with respect to t and construct equations of motion for rho
ddt_dT_drhoflux=diff(dT_drhoflux_tt,t)
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%));
eq_rhofull=ddt_dT_drhoflux-dT_drho_tt+dV_drho_tt
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%));
eq_rhofull=solve(eq_rhofull,diff(rho(t),t,t))
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%));
eq_rhofull=convert(eq_rhofull,horner)
#simplify expression for matlab en lose time dependencie notation and d/dt
T1_eq_rhofull=subs
#> length(%);
T2_eq_rhofull=subs
T3_eq_rhofull=subs
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%));
T3_eq_rhofull=collect(T3_eq_rhofull,aa_FF)
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%));
#Solve again for aa_FF: since bb_FF_1 and bb_FF_2 are now substituted and are also functions aa_FF - CAN NOT SIMPLIFY FURTHER
T4_eq_rhofull=solve
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%));
T5_eq_rhofull=convert(T4_eq_rhofull,horner)
#> length(%);
#Linearized equations of motion using the Lagrangian
#lin eq of motion for beta_1
eq_mo_beta1_FF_lin=subs
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%)), `simplify length` = length(symplify(%));
#lin eq of motion for beta_2
eq_mo_beta2_FF_lin=subs
#> `starting length` = length(%), `converting to horner`=length(convert(%,horner)), factoring=length(factor(%));
#lin eq of motion for rho
eq_mo_rho_FF_lin=subs
#Matlab code
#rho
#> Matlab(T5_eq_rho[full], resultname="aa_FF");
# too long...
#> Matlab(eq_mo_rho_FF_lin, resultname="aa_FF_lin");
# too long...
#beta_1
#> Matlab(bb_FF_1, resultname="bb_FF_1");
# too long...
#> Matlab(eq_mo_beta1_FF_lin, resultname="bb_FF_1_lin");
# too long...
#beta_2
#> Matlab(bb_FF_2, resultname="bb_FF_2");
# too long...
#> Matlab(eq_mo_beta2_FF_lin, resultname="bb_FF_2_lin");
# too long...
#