-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexamples.py
584 lines (484 loc) · 22.3 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 5 22:31:03 2017
@author: dave
"""
from os.path import join as pjoin
from datetime import date
import numpy as np
import pandas as pd
from openbenchmarking import (EditXML, xml2df, explore_dataset, plot_barh,
plot_barh_groups, search_openbm,
load_local_testids, find_items_in_field,
find_results_with_items_in_field)
def example_xml():
"""Manually select a bunch of cases and select only those systems and
resuls that are of importance.
"""
search_hardware = 'RX 480'
search_descr = '1920 x 1080'
# # download all of them seperately
# for test_result in cases:
# print('='*10, test_result)
# obm = EditXML()
# obm.load(obm.url_base.format(test_result))
# id_rename = obm.remove(search_tests, search_hardware, search_descr)
# obm.cleanup(id_rename)
# obm.write_local()
# heaven and RX 480, ALL
#for k in url.split(','): print("'"+k+"',")
cases1 = ['1608171-LO-AMDGPUPRO13',
'1606281-HA-RX480LINU80',
'1608101-KH-1608099KH32',
'1606304-HA-1606297HA97',
'1606302-HA-RADEONRX435',
'1608200-PTS-AMDGPUPR97',
'1608186-KH-1608171LO49',
'1610315-TA-AMDGPUPRO08',
'1606288-HA-RX480LINU56',
'1607160-LO-AMDGPUVSM87',
'1607103-LO-RX480OVER58',
'1608286-LO-WINDOWS1070',
'1606302-HA-RADEONRX476',
'1607091-LO-LINUX48DR92',
'1606297-HA-RADEONRX427',
'1606299-HA-RX480DRIV74',
'1607171-LO-GTX1060BE75',
'1608099-KH-1606281HA62',
'1607015-HA-1606297HA02',
'1611267-LO-HEAVEN35158',
'1607173-LO-GTX1060PO50',
'1606300-HA-1606297HA15',
'1607014-HA-1606297HA25',
'1606300-HA-1606300HA08',
'1608192-KH-1608101KH50',
'1606306-GA-1606297HA13',
'1609136-LO-MULTICARD22',
'1606309-KH-1606297HA78',
'1608274-LO-44444267033',
'1609257-LO-NEWSYSTEM60',
'1609180-LO-RX370MESA29',
'1610142-LO-TEST0114153']
# load all from the same source
# search_tests = 'unigine-heaven'
# obm = EditXML()
# url = obm.url_base.format(','.join(cases))
# obm.load(url)
# id_rename = obm.remove(search_tests, search_hardware, search_descr)
# obm.cleanup(id_rename)
# obm.write_local(test_result='{}-rx-480-1920x1080'.format(search_tests))
# tropics, rx 480
cases2 = ['1609109-KH-1609104KH60',
'1609136-LO-MULTICARD22',
'1607147-HA-TROPICS6107',
'1609104-KH-A10UNIGIN40']
# load all from the same source
# search_tests = 'unigine-tropics'
# obm = EditXML()
# url = obm.url_base.format(','.join(cases))
# obm.load(url)
# id_rename = obm.remove(search_tests, search_hardware, search_descr)
# obm.cleanup(id_rename)
# obm.write_local(test_result='{}-rx-480-1920x1080'.format(search_tests))
# valley, rx 480
cases3 = ['1608171-LO-AMDGPUPRO13',
'1606281-HA-RX480LINU80',
'1608101-KH-1608099KH32',
'1606304-HA-1606297HA97',
'1606302-HA-RADEONRX435',
'1608200-PTS-AMDGPUPR97',
'1608186-KH-1608171LO49',
'1611237-KH-NOV22270868',
'1607160-LO-AMDGPUVSM87',
'1607103-LO-RX480OVER58',
'1608286-LO-WINDOWS1070',
'1606302-HA-RADEONRX476',
'1606297-HA-RADEONRX427',
'1606299-HA-RX480DRIV74',
'1606287-HA-RX480DOLL44',
'1608099-KH-1606281HA62',
'1607171-LO-GTX1060BE75',
'1607015-HA-1606297HA02',
'1607178-LO-GTX1060MO36',
'1606300-HA-1606297HA15',
'1607014-HA-1606297HA25',
'1608192-KH-1608101KH50',
'1606300-HA-1606300HA08',
'1611233-KH-TGM74906897',
'1606306-GA-1606297HA13',
'1606309-KH-1606297HA78',
'1608278-GNAR-160827263',
'1607134-KH-1606112KH22',
'1608272-LO-55555650923',
'1609180-LO-RX370MESA29',
'1607040-KH-JULIEN50266',
'1608238-HA-UNIGINEVA24']
# search_tests = 'unigine-valley'
# obm = EditXML()
# url = obm.url_base.format(','.join(cases))
# obm.load(url)
# id_rename = obm.remove(search_tests, search_hardware, search_descr)
# obm.cleanup(id_rename)
# obm.write_local(test_result='{}-rx-480-1920x1080'.format(search_tests))
# sanctuary, rx 480
cases4 = ['1609109-KH-1609104KH60',
'1609107-KH-A1062869437',
'1609104-KH-A10UNIGIN40',
'1607125-HA-SANTUARY143']
# search_tests = 'unigine-sanctuary'
# obm = EditXML()
# url = obm.url_base.format(','.join(cases))
# obm.load(url)
# id_rename = obm.remove(search_tests, search_hardware, search_descr)
# obm.cleanup(id_rename)
# obm.write_local(test_result='{}-rx-480-1920x1080'.format(search_tests))
# ========================================
cases = cases1 + cases2 + cases3 + cases4
cases=set(cases)
search_tests = 'unigine-'
obm = EditXML()
url = obm.url_base.format(','.join(cases))
obm.load(url)
id_rename = obm.remove(search_tests, search_hardware, search_descr)
obm.cleanup(id_rename)
obm.write_local(test_result='{}-rx-480-1920x1080'.format('unigine-all'))
def example1_dataframe():
# load previously donwload data
xml = xml2df()
df = pd.read_hdf(pjoin(xml.res_path, 'search_rx_470.h5'), 'table')
df.drop(xml.user_cols, inplace=True, axis=1)
df.drop_duplicates(inplace=True)
# only R470 graphic cards
res_find = df['Graphics'].str.lower().str.find('rx 470')
# grp_lwr holds -1 for entries that do not contain the search string
# we are only interested in taking the indeces of those entries that do
# contain our search term, so antyhing above -1
df_sel = df.loc[(res_find > -1).values]
# now see for which tests we have sufficient data
explore_dataset(df_sel, 'ResultIdentifier', 'ResultDescription', 'Processor')
# select only a certain test
df_sel = df_sel[df_sel['ResultIdentifier'] == 'pts/unigine-valley-1.1.4']
# and the same version/resultion of said test
seltext = 'Resolution: 1920 x 1080 - Mode: Fullscreen'
sel = df_sel[df_sel['ResultDescription']==seltext].copy()
# cast Value to a float64
sel['Value'] = sel['Value'].astype(np.float64)
# remove close to zero measurements
sel = sel[(sel['Display Driver']!='None') &
(sel['Value']>0.5)]
# now we need to pivot the table into a different form:
# each column is a different hardware/software combination, and each row
# is another different variable (test/hardware/software)
plot_barh(sel, 'Processor', label_xval='Value')
plot_barh_groups(sel, 'Graphics', 'Processor', label_xval='Value')
# plot_barh_groups(df, label_yval, label_grousp, label_xval='Value')
# -------------------------------------------------------------------------
# pp=df[:10]
# grp_lwr = pp['Scale'].str.lower().str.find('watts')
# isel = grp_lwr[grp_lwr > -1].index
# pp['Scale'].loc[isel]
def example2_dataframe():
# load previously donwload data
xml = xml2df()
df = pd.read_hdf(pjoin(xml.res_path, 'search_rx_470.h5'), 'table')
df.drop(xml.user_cols, inplace=True, axis=1)
df.drop_duplicates(inplace=True)
# only RX 470 graphic cards
df_find = df['Graphics'].str.lower().str.find('rx 470')
# grp_lwr holds -1 for entries that do not contain the search string
# we are only interested in taking the indeces of those entries that do
# contain our search term, so antyhing above -1
df_sel = df.loc[(df_find > -1).values]
# now see for which tests we have sufficient data
explore_dataset(df_sel, 'ResultIdentifier', 'ResultDescription', 'Processor')
# select only a certain test
df_sel = df_sel[df_sel['ResultIdentifier'] == 'pts/xonotic-1.4.0']
# and the same version/resultion of said test
seltext = 'Resolution: 1920 x 1080 - Effects Quality: Ultimate'
sel = df_sel[df_sel['ResultDescription']==seltext].copy()
# cast Value to a float64
sel['Value'] = sel['Value'].astype(np.float64)
# remove close to zero measurements, and those cases where the Display
# Driver field got lost
# sel = sel[(sel['Display Driver']!='None') &
# (sel['Value']>0.5)]
qq = sel[sel['Processor']==' Intel Core i5-4670K @ 3.80GHz (4 Cores)']
for col in qq:
print(len(qq[col].unique()), col)
if len(qq[col].unique()) > 1:
print('******', qq[col].unique())
# now we need to pivot the table into a different form:
# each column is a different hardware/software combination, and each row
# is another different variable (test/hardware/software)
# plot_barh(sel, 'Processor', label_xval='Value')
plot_barh_groups(sel, 'Graphics', 'Processor', label_xval='Value')
def example3_dataframe():
# load previously donwload data
xml = xml2df()
df = pd.read_hdf(pjoin(xml.res_path, 'search_rx_470.h5'), 'table')
df.drop(xml.user_cols, inplace=True, axis=1)
df.drop_duplicates(inplace=True)
# select only subset of data, and plot
# only R470 graphic cards
res_find = df['Graphics'].str.lower().str.find('rx 470')
# grp_lwr holds -1 for entries that do not contain the search string
# we are only interested in taking the indeces of those entries that do
# contain our search term, so antyhing above -1
df_sel = df.loc[(res_find > -1).values]
explore_dataset(df_sel, 'ResultIdentifier', 'ResultDescription', 'Processor')
# select only a certain test
df_sel = df_sel[df_sel['ResultIdentifier'] == 'pts/xonotic-1.4.0']
# and the same version/resultion of said test
seltext = 'Resolution: 3840 x 2160 - Effects Quality: Ultimate'
sel = df_sel[df_sel['ResultDescription']==seltext].copy()
# cast Value to a float64
sel['Value'] = sel['Value'].astype(np.float64)
# remove close to zero measurements
# sel = sel[(sel['Display Driver']!='None') &
# (sel['Value']>0.5)]
# now we need to pivot the table into a different form:
# each column is a different hardware/software combination, and each row
# is another different variable (test/hardware/software)
# plot_barh(sel, 'Processor', label_xval='Value')
plot_barh_groups(sel, 'Graphics', 'Processor', label_xval='Value')
def example(search):
# load previously donwload data
xml = xml2df()
# df = pd.read_hdf(pjoin(xml.res_path, 'search_rx_470.h5'), 'table')
testids = search_openbm(search=search, save_xml=True)
# TODO: create method to convert a list of testids into a DataFrame
# either load locally or from remote
df.drop(xml.user_cols, inplace=True, axis=1)
df.drop_duplicates(inplace=True)
# select only subset of data, and plot
# only R470 graphic cards
res_find = df['Graphics'].str.lower().str.find('rx 470')
# grp_lwr holds -1 for entries that do not contain the search string
# we are only interested in taking the indeces of those entries that do
# contain our search term, so antyhing above -1
df_sel = df.loc[(res_find > -1).values]
explore_dataset(df_sel, 'ResultIdentifier', 'ResultDescription', 'Processor')
# select only a certain test
df_sel = df_sel[df_sel['ResultIdentifier'] == 'pts/xonotic-1.4.0']
# and the same version/resultion of said test
seltext = 'Resolution: 3840 x 2160 - Effects Quality: Ultimate'
sel = df_sel[df_sel['ResultDescription']==seltext].copy()
# cast Value to a float64
sel['Value'] = sel['Value'].astype(np.float64)
# remove close to zero measurements
# sel = sel[(sel['Display Driver']!='None') &
# (sel['Value']>0.5)]
# now we need to pivot the table into a different form:
# each column is a different hardware/software combination, and each row
# is another different variable (test/hardware/software)
# plot_barh(sel, 'Processor', label_xval='Value')
plot_barh_groups(sel, 'Graphics', 'Processor', label_xval='Value')
def testA_vs_testB():
"""Find the corrolation between two benchmark results
"""
xml = xml2df()
df = pd.read_hdf(pjoin(xml.db_path, 'database.h5'), 'table')
df['ProcessorFrequency'] = df['ProcessorFrequency'].astype(str)
df['ProcessorFrequency'] = df['ProcessorFrequency'].str.replace('GHz', '')
df['ProcessorFrequency'] = df['ProcessorFrequency'].astype(np.float32)
resid1 = 'pts/graphics-magick-1.4.1'
resid2 = 'pts/c-ray-1.1.0'
sel = df[((df['ResultIdentifier']==resid1) |
(df['ResultIdentifier']==resid2)) & (df['ResultOf']=='no') &
(df['ProcessorFrequency']<20)]
sel = sel.copy()
sel['Value'] = sel['Value'].astype(np.float32)
sel['ProcessorCores'] = sel['ProcessorCores'].astype(np.float32)
test1, test2 = [], []
for hwhash, gr_hw in sel.groupby('HardwareHash'):
if len(gr_hw['ResultIdentifier'].unique()) < 2:
continue
print(hwhash)
for test, gr_test in gr_hw.groupby('ResultIdentifier'):
print(' ', test.ljust(30), '{: 3d}'.format(len(gr_test)),
'{: 9.02f}'.format(gr_test['Value'].mean()),
'{: 9.02f}'.format(gr_test['Value'].std()),
'{: 9.02f}'.format(gr_test['Value'].min()),
'{: 9.02f}'.format(gr_test['Value'].max()))
# create a pivot table
pivot = pd.pivot_table(sel, values='Value',
index='HardwareHash',
columns='ResultIdentifier')#,
# aggfunc=[np.mean, np.std, np.min, np.max, np.sum])
# remove all harware configurations that only have one test result
data = pivot.dropna(axis=0)
def cross_plot():
# create a plot like with joint distributions and their cross distributions
# for example: 25 systems, 21 tests
# http://openbenchmarking.org/result/1603119-GA-1401227SO30
# AMD vs Intel, non gaming
xml = xml2df()
testid = '1701157-RI-CLEARPATC00' # 2 systems, 11 tests
testid = '1603119-GA-1401227SO30' # 25 systems, 21 tests
xml.load_testid_from_obm(testid, save_xml=True, use_cache=True)
df_dict = xml.xml2dict()
df = xml.dict2df(df_dict)
# df = pd.DataFrame(df_dict)
pivot = pd.pivot_table(df, values='Value', index='SystemIdentifier',
columns='ResultIdentifier')
# 73 systems, 23 tests
# games, 12/2016
# http://openbenchmarking.org/result/1612283-DARK-HD7950R28
def find_hardware():
"""Example to look for hardware and compare results from a given test
"""
xml = xml2df()
df = pd.read_hdf(pjoin(xml.db_path, 'database.h5'), 'table')
field = 'ProcessorName'
search_items = ['4850e', 'x2 555']
df_sel = find_items_in_field(df, search_items, field)
# find tests for which we have all targets have a data point
resids = find_results_with_items_in_field(df_sel, search_items, field)
# list all results
for key, values in resids.items():
print(key)
for value in values:
print(' ', value)
explore_dataset(df_sel, 'ResultIdentifier', 'ResultDescription',
'Processor', min_cases=2)
# plot a single ResultIdentifier. Note that this might contain several
# variations of the test, as defined in the ResultDescription
sel = df_sel[df_sel['ResultIdentifier']=='pts/encode-mp3-1.3.1']
fig, ax = plot_barh_groups(sel, 'Graphics', 'Processor', label_xval='Value')
# plot all common results
for resid, values in resids.items():
sel1 = df_sel[df_sel['ResultIdentifier']==resid]
for resdescr in values:
sel2 = sel1[sel1['ResultDescription']==resdescr]
fig, ax = plot_barh_groups(sel2, 'Graphics', 'Processor',
label_xval='Value')
ax.set_title(resid + '\n' + resdescr)
def database():
"""
"""
# manual XML file changes:
# there is one case that has (Total Cores: 4) instead of (4 Cores)
# for the Processor tag.
# http://openbenchmarking.org/result/1108293-IV-ZAREASONL67
xml = xml2df()
df = pd.read_hdf(pjoin(xml.db_path, 'database_results.h5'), 'table')
df_sys = pd.read_hdf(pjoin(xml.db_path, 'database_systems.h5'), 'table')
field = 'Disk'
search_items = ['960 evo', '950 evo', 'KC1000', 'RD400']
df_sel = find_items_in_field(df_sys, search_items, field)
# field = 'ResultTitle'
# search_items = ['flexible io tester']
# df_sel = find_items_in_field(df, search_items, field)
df_sel = pd.merge(df_sel, df, left_on='SystemHash', right_on='SystemHash',
how='left', sort=False)
resids = find_results_with_items_in_field(df_sel, search_items, field,
gr1='ResultTitle')
for resid, values in resids.items():
sel1 = df_sel[df_sel['ResultTitle']==resid]
print(resid, sel1['ResultIdentifier'].unique())
for resdescr in values:
sel2 = sel1[sel1['ResultDescription']==resdescr]
if len(sel2) > 1:
print(' % 3i %s' % (len(sel2), resdescr))
# plot some results
resid_manual = {'pts/xonotic-1.3.1':['Resolution: 1920 x 1080 - Effects Quality: High'],
'pts/unigine-sanctuary-1.5.2':['Resolution: 1920 x 1080']}
#'pts/c-ray-1.1.0':['Total Time'],
#'pts/dota2-1.2.1':['Resolution: 1920 x 1080 - Renderer: OpenGL'],
#'pts/unigine-heaven-1.6.2':['Resolution: 1920 x 1080 - Mode: Fullscreen'],
#'pts/unigine-valley-1.1.4':['Resolution: 1920 x 1080 - Mode: Fullscreen']}
for resid, values in resid_manual.items():
sel1 = df_sel[df_sel['ResultIdentifier']==resid]
for resdescr in values:
sel2 = sel1[sel1['ResultDescription']==resdescr]
if len(sel2) == 0:
continue
elif len(sel2) > 2:
fig, ax = openbm.plot_barh_groups(sel2, 'ProcessorName',
'Graphics', label_xval='Value')
else:
fig, ax = openbm.plot_barh(sel2, 'ProcessorName',
label_xval='Value')
ax.set_title(resid + '\n' + resdescr)
def example_db_split_gpu():
field = 'Graphics'
search_items = ['rx 460', 'R7 260X', 'hd 6950', 'hd 7950', 'hd 7790']
search_items = ['rx 460', 'R7 260X']
search_items = ['rx 460', 'hd 7790', 'hd 7950', 'R7 260X']
gr1 = 'ResultIdentifier'
xml = xml2df()
#df = pd.read_hdf(pjoin(xml.db_path, 'database_categoricals.h5'), 'table')
df = pd.read_hdf(pjoin(xml.db_path, 'database_results.h5'), 'table')
df_sys = pd.read_hdf(pjoin(xml.db_path, 'database_systems.h5'), 'table')
#search_items = ['r7 250']
df_sel = find_items_in_field(df_sys, search_items, field)
df_sel = pd.merge(df_sel, df, left_on='SystemHash', right_on='SystemHash',
how='left', sort=False)
resids = find_results_with_items_in_field(df_sel, search_items, field,
gr1=gr1)
for key, values in resids.items():
print(key)
for value in values:
print(' ', value)
for resid, values in resids.items():
sel1 = df_sel[df_sel['ResultIdentifier']==resid]
print(resid, sel1['ResultIdentifier'].unique())
for resdescr in values:
sel2 = sel1[sel1['ResultDescription']==resdescr]
if len(sel2) > 1:
print(' % 3i %s' % (len(sel2), resdescr))
resid_manual = {
'pts/xonotic-1.3.1':['Resolution: 1920 x 1080 - Effects Quality: High',
'Resolution: 3840 x 2160 - Effects Quality: Ultimate'],
'pts/unigine-heaven-1.6.2':['Resolution: 1920 x 1080 - Mode: Fullscreen'],
'pts/c-ray-1.1.0':['Total Time'],
'pts/gputest-1.3.1':['pts/gputest-1.3.1'],
'pts/bioshock-infinite-1.0.1':['Resolution: 1920 x 1080 - Effects Quality: Ultra'],
}
#'pts/unigine-sanctuary-1.5.2':['Resolution: 1920 x 1080']}
#'pts/c-ray-1.1.0':['Total Time'],
#'pts/dota2-1.2.1':['Resolution: 1920 x 1080 - Renderer: OpenGL'],
#'pts/unigine-heaven-1.6.2':['Resolution: 1920 x 1080 - Mode: Fullscreen'],
#'pts/unigine-valley-1.1.4':['Resolution: 1920 x 1080 - Mode: Fullscreen']}
for resid, values in resid_manual.items():
sel1 = df_sel[df_sel['ResultIdentifier']==resid]
for resdescr in values:
sel2 = sel1[sel1['ResultDescription']==resdescr]
if len(sel2) == 0:
continue
elif len(sel2) > 2:
fig, ax = plot_barh_groups(sel2, 'ProcessorName', 'Graphics',
label_xval='Value')
else:
fig, ax = plot_barh(sel2, 'ProcessorName', label_xval='Value')
ax.set_title(resid + '\n' + resdescr)
# Plot all results
for resid, values in resids.items():
sel1 = df_sel[df_sel[gr1]==resid]
for resdescr in values:
sel2 = sel1[sel1['ResultDescription']==resdescr]
if len(sel2) <= 1:
continue
fig, ax = plot_barh_groups(sel2, 'ProcessorName', 'Graphics',
label_xval='Value')
ax.set_title(resid + '\n' + resdescr)
if __name__ == '__main__':
xml = xml2df()
# -------------------------------------------------------------------------
# MERGE ALL LOCALLY SAVED XML FILES INTO A DataFrame
# df, failed = load_local_testids()
# df.to_hdf(pjoin(xml.db_path, 'database.h5'), 'table')
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# obm = xml2df()
# # load a locally saved testid XML file
# io = pjoin(obm.res_path, "1606281-HA-RX480LINU80/composite.xml")
# obm.load(io)
# dict_sys = obm.generated_system2dict()
# dict_res = obm.data_entry2dict()
# obm = xml2df()
# # download testid XML file from OpenBenchmarking
# obm.load_testid('1606281-HA-RX480LINU80')
# dict_sys = obm.generated_system2dict()
# dict_res = obm.data_entry2dict()