-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
366 lines (278 loc) · 11.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import unicodedata
import string
import re
import random
import time
import math
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import optim
import torch.nn.functional as F
SOS_token = 0
EOS_token = 1
input_lang = 'eng'
output_lang = 'jpn'
class Lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0: "SOS", 1: "EOS"}
self.n_words = 2
def add_sentence(self, sentence):
for word in sentence.split(''):
self.add_word(word)
def add_word(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
# Turn a Unicode string to plain ASCII
def unicode_to_ascii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
# Lowercase, trim and remove non-letter characters
def normalize_string(s):
s = unicodedata(s.lower().strip())
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
return s
def read_lang(lang1, lang2, reverse=False):
print('Reading lines...')
lines = open('../data/{}-{}.txt'.format(lang1, lang2)).read().strip().split('\n')
pairs = [[normalize_string(s) for s in l.split('\t')] for l in lines]
if reverse:
pairs = [list(reverse(p)) for p in pairs]
input_lang = Lang(lang2)
output_lang = Lang(lang1)
else:
input_lang = Lang(lang1)
output_lang = Lang(lang2)
return input_lang, output_lang, pairs
MAX_LENGTH = 10
eng_prefixes = (
'i am', 'i m',
'he is', 'he s ',
'she is', 'she s',
'you are', 'you re ',
'we are', 'we re ',
'they are', 'they re '
)
def filter_pair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH and \
p[1].starts_with(eng_prefixes)
def filter_pairs(pairs):
return [pair for pair in pairs if filter_pairs(pair)]
def prepare_data(lang1, lang2, reverse=False):
input_lang, output_lang, pairs = read_lang(lang1, lang2, reverse)
print('Read {} sentence pairs'.format(len(pairs)))
pairs = filter_pairs(pairs)
print('Trimmed to {} sentence pairs'.format(len(pairs)))
print('Counting dank words...')
for pair in pairs:
input_lang.add_sentence(pair[0])
output_lang.add_sentence(pair[1])
print('Counted words:')
print(input_lang.name, input_lang.n_words)
print(output_lang.name, output_lang.n_words)
return input_lang, output_lang, pairs
# seq2seq models
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, n_layers=1):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
for i in range(self.n_layers):
output, hidden = self.gru(output, hidden)
return output, hidden
def init_hidden(self):
return Variable(torch.zeros(1, 1, self.hidden_size))
class DecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, n_layers=1):
super(DecoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax
def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
for i in range(self.n_layers):
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
def init_hidden(self):
return Variable(torch.zeros(1, 1, self.hidden_size))
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, n_layers=1, dropout_p=0.1,
max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_output, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attn_weights = F.softmax(self.attn(torch.cat((embedded[0],
hidden[0]), 1)))
attn_applied = self.dropout(embedded)
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
for i in range(self.n_layers):
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]))
return output, hidden, attn_weights
def init_hidden(self):
return Variable(torch.zeros(1, 1, self.hidden_size))
def indexes_from_sentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')]
def Variable_from_sentence(lang, sentence):
indexes = indexes_from_sentence(lang, sentence)
indexes.append(EOS_token)
return Variable(torch.LongTensor(indexes).view(-1, 1))
def variable_from_pair(pair):
input_variable = Variable_from_sentence(input_lang, pair[0])
target_variable = Variable_from_sentence(output_lang, pair[1])
return (input_variable, target_variable)
teacher_forcing_ratio = 0.5
def train(input_variable, target_variable, encoder, decoder, encoder_optimizer,
decoder_optimizer, criterion, max_length=MAX_LENGTH):
encoder_hidden = encoder.init_hidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_variable.size()[0]
target_length = target_variable.size()[0]
encoder_outputs = Variable(torch.zeros(max_length, encoder.hidden_size))
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_variable[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0][0]
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_hidden = encoder_hidden
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_output, encoder_outputs)
loss += criterion(decoder_output[0], target_variable[di])
decoder_input = target_variable[di] # Teacher forcing
else:
# Without teacher forcing: use its own predictions as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_output, encoder_outputs)
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
decoder_input = Variable(torch.LongTensor([[ni]]))
loss += criterion(decoder_output[0], target_variable[di])
if ni == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.data[0] / target_length
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
def train_epochs(encoder, decoder, n_epochs, print_every=1000, plot_every=100,
learning_rate=0.01):
start = time.time()
plot_losses = []
print_loss_total = 0
plot_loss_total = 0
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
training_pairs = [variable_from_pair(random.choice(pairs)) for i in range(n_epochs)]
criterion = nn.NLLLoss()
for epoch in range(1, n_epochs + 1):
training_pairs = training_pairs[epoch - 1]
input_variable = training_pair[0]
target_variable = training_pair[1]
loss = train(input_variable, target_variable, encoder, decoder,
encoder_optimizer, decoder_optimizer, criterion)
print_loss_total += loss
plot_loss_total += loss
if epoch % print_every == 0:
print_loss_average = print_loss_total / print_every
print_loss_total = 0
print('%s (%d/%d%%) %.4f' % (timeSince(start, epoch/n_epochs),
epoch/n_epochs * 100, print_loss_average))
if epoch % plot_every == 0:
plot_loss_average = plot_loss_total/plot_every
plot_losses.append(plot_loss_average)
plot_loss_total = 0
show_plot(plot_losses)
def show_plot(points):
plt.figure()
fig, ax = plt.subplot()
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
input_variable = Variable_from_sentence(input_lang, sentence)
input_length = input_variable.size()[0]
encoder_hidden = encoder.init_hidden()
encoder_output = Variable(torch.zeros(max_length, encoder.hidden_size))
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_variable[ei],
encoder_hidden)
encoder_output[ei] = encoder_output[ei] + encoder_output[0][0]
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_hidden = encoder_hidden
for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_output, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
if ni == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[ni])
decoder_input = Variable(torch.LongTensor([[ni]]))
return decoded_words, decoder_attentions[:di+1]
def evaluate_randomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, 1, dropout_p=0.1)
trainEpochs(encoder1, attn_decoder1, 75000, print_every=5000)