-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
executable file
·257 lines (212 loc) · 9.75 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import timm
import torch.nn as nn
import torch
from timm.models.vision_transformer import VisionTransformer
from torchvision.models.resnet import Bottleneck
from transformers import CLIPModel, CLIPProcessor
from torchvision.models.resnet import BasicBlock, Bottleneck
import torch
from torch import nn as nn
from torch.utils import model_zoo
import open_clip
from timm.layers import SwiGLUPacked
import os
os.environ['http_proxy'] = 'http://10.13.118.13:7890'
os.environ['https_proxy'] = 'http://10.13.118.13:7890'
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
class ResNet(nn.Module):
def __init__(self, block, layers, classes=100):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.class_classifier = nn.Linear(512 * block.expansion, classes)
self.pecent = 1/3
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return self.class_classifier(x)
def resnet18(pretrained=True, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
return model
def resnet50(pretrained=True, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False)
return model
class ResNetTrunk(ResNet):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
del self.fc # remove FC layer
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def get_pretrained_url(key):
URL_PREFIX = "https://github.com/lunit-io/benchmark-ssl-pathology/releases/download/pretrained-weights"
model_zoo_registry = {
"BT": "bt_rn50_ep200.torch",
"MoCoV2": "mocov2_rn50_ep200.torch",
"SwAV": "swav_rn50_ep200.torch",
"DINO_p16": "dino_vit_small_patch16_ep200.torch",
"DINO_p8": "dino_vit_small_patch8_ep200.torch",
}
pretrained_url = f"{URL_PREFIX}/{model_zoo_registry.get(key)}"
return pretrained_url
def resnet50(pretrained, progress, key, **kwargs):
model = ResNetTrunk(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
pretrained_url = get_pretrained_url(key)
verbose = model.load_state_dict(
torch.hub.load_state_dict_from_url(pretrained_url, progress=progress)
)
print(verbose)
return model
def vit_small(pretrained, progress, key, **kwargs):
patch_size = kwargs.get("patch_size", 16)
model = VisionTransformer(
img_size=224, patch_size=patch_size, embed_dim=384, num_heads=6, num_classes=0
)
if pretrained:
pretrained_url = get_pretrained_url(key)
verbose = model.load_state_dict(
torch.hub.load_state_dict_from_url(pretrained_url, progress=progress)
)
print(verbose)
return model
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.relu = nn.ReLU()
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
class CustomModel(nn.Module):
def __init__(self, cfg, encoder):
super().__init__()
self.encoder = encoder
self.head = nn.Linear(encoder.embed_dim, cfg.n_class)
# if cfg['dataset'] == 'tct':
# self.head = MLP(encoder.embed_dim, 2048, cfg['nb_classes'])
# else:
# self.head = nn.Linear(encoder.embed_dim, cfg['nb_classes'])
def forward(self, image, return_feature=False):
image_features = self.encoder(image)
logits = self.head(image_features)
if return_feature:
return logits, image_features
return logits
def build_model(cfg):
if cfg.pretrain == 'natural_supervised':
encoder = resnet18()
encoder.class_classifier = nn.Identity()
encoder.embed_dim = encoder.inplanes
elif cfg.pretrain == 'medical_ssl':
encoder = vit_small(pretrained=True, progress=False, key="DINO_p16", patch_size=16)
elif cfg.pretrain == 'UNI':
encoder = timm.create_model(
"vit_large_patch16_224", img_size=224, patch_size=16, init_values=1e-5, num_classes=0, dynamic_img_size=True, pretrained=False
)
encoder.load_state_dict(torch.load("/mnt/Xsky/syx/project/model/UNI/pytorch_model.bin", map_location="cpu"), strict=True)
elif cfg.pretrain == 'GigaPath':
encoder = timm.create_model("hf_hub:prov-gigapath/prov-gigapath", pretrained=True)
elif cfg.pretrain == 'virchow':
encoder = timm.create_model("hf-hub:paige-ai/Virchow", pretrained=True, mlp_layer=SwiGLUPacked, act_layer=torch.nn.SiLU)
return encoder
def build_model_vlm(cfg):
if cfg.pretrain == 'plip':
encoder = CLIPModel.from_pretrained("/mnt/Xsky/syx/model/clip-based/PLIP")
elif cfg.pretrain == 'quilt-net':
encoder = CLIPModel.from_pretrained("/mnt/Xsky/syx/model/clip-based/Quilt-Net")
elif cfg.pretrain == 'biomedclip':
encoder, preprocess = open_clip.create_model_from_pretrained(
'hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224',
cache_dir='/mnt/Xsky/syx/model/clip/hub/models')
else:
if cfg.pretrain == 'path-clip-B':
pretrained = '/mnt/Xsky/syx/model/clip/exp/ViT-B-16/0526/ori_pretrained/ratiotmp6/checkpoints/epoch_2.pt' # ViT-B-16
model_name = 'ViT-B-16'
elif cfg.pretrain == 'path-clip-B-AAAI':
pretrained = '/mnt/Xsky/syx/model/clip/exp/ViT-B-16/epoch_3_best1.pt' # ViT-B-16
model_name = 'ViT-B-16'
elif cfg.pretrain == 'path-clip-L-336':
pretrained = '/mnt/Xsky/syx/model/clip/exp/ViT-L-14-336/0522/ori_pretrained/ratiotmp5/checkpoints/epoch_2.pt' #ViT-L-14-336
model_name = 'ViT-L-14-336'
elif cfg.pretrain == 'openai-clip-B':
pretrained = '/mnt/Xsky/syx/clip_cached_model/clip/ViT-B-16.pt'
model_name = 'ViT-B-16'
elif cfg.pretrain == 'openai-clip-L-336':
pretrained = '/mnt/Xsky/syx/clip_cached_model/clip/ViT-L-14-336px.pt'
model_name = 'ViT-L-14-336'
elif cfg.pretrain == 'path-clip-L-768':
pretrained = '/mnt/Xsky/syx/model/clip/exp/ViT-L-32-768/240616/ori/ratiotmp5/checkpoints/epoch_2.pt'
# although 'path-clip-L-768' also uses model_name of 'ViT-L-14-336', this model is
# self-define in src.openclip fold. hence, use this model please turn import open_clip as
# import src.open_clip as open_clip
model_name = 'ViT-L-14-336'
encoder, _, _ = open_clip.create_model_and_transforms(model_name, pretrained=pretrained,
cache_dir='/mnt/Xsky/syx/model/open_clip',
force_quick_gelu=True)
return encoder